Zebrafish needle EMG: A new tool for high-throughput drug screens

Sung Joon Cho, Tai Seung Nam, Donghak Byun, Seok Yong Choi, Myeong Kyu Kim, Sohee Kim

Research output: Contribution to journalArticlepeer-review

19 Scopus citations

Abstract

Zebrafish models have recently been highlighted as a valuable tool in studying the molecular basis of neuromuscular diseases and developing new pharmacological treatments. Needle electromyography (EMG) is needed not only for validating transgenic zebrafish models with muscular dystrophies (MD), but also for assessing the efficacy of therapeutics. However, performing needle EMG on larval zebrafish has not been feasible due to the lack of proper EMG sensors and systems for such small animals. We introduce a new type of EMG needle electrode to measure intramuscular activities of larval zebrafish, together with a method to hold the animal in position during EMG, without anesthetization. The silicon-based needle electrode was found to be sufficiently strong and sharp to penetrate the skin and muscles of zebrafish larvae, and its shape and performance did not change after multiple insertions. With the use of the proposed needle electrode and measurement system, EMG was successfully performed on zebrafish at 30 days postfertilization (dpf) and at 5 dpf. Burst patterns and spike morphology of the recorded EMG signals were analyzed. The measured single spikes were triphasic with an initial positive deflection, which is typical for motor unit action potentials, with durations of ~ 10 ms, whereas the muscle activity was silent during the anesthetized condition. These findings confirmed the capability of this system of detecting EMG signals from very small animals such as 5 dpf zebrafish. The developed EMG sensor and system are expected to become a helpful tool in validating zebrafish MD models and further developing therapeutics.

Original languageEnglish
Pages (from-to)2065-2070
Number of pages6
JournalJournal of Neurophysiology
Volume114
Issue number3
DOIs
StatePublished - 1 Sep 2015

Bibliographical note

Publisher Copyright:
© 2015 the American Physiological Society.

Keywords

  • Electrode
  • Microneedle
  • Motor unit action potential
  • Needle electromyography
  • Zebrafish

Fingerprint

Dive into the research topics of 'Zebrafish needle EMG: A new tool for high-throughput drug screens'. Together they form a unique fingerprint.

Cite this