TY - JOUR
T1 - Unexpected strong magnetism of Cu doped single-layer MoS2 and its origin
AU - Yun, Won Seok
AU - Lee, J. D.
PY - 2014/5/21
Y1 - 2014/5/21
N2 - The magnetism of the 3d transition-metal (TM) doped single-layer (1L) MoS2, where the Mo atom is partially replaced by the 3d TM atom, is investigated using the first-principles density functional calculations. In a series of 3d TM doped 1L-MoS2's, the induced spin polarizations are negligible for Sc, Ti, and Cr dopings, while the induced spin polarizations are confirmed for V, Mn, Fe, Co, Ni, Cu, and Zn dopings and the systems become magnetic. Especially, the Cu doped system shows unexpectedly strong magnetism although Cu is nonmagnetic in its bulk state. The driving force is found to be a strong hybridization between Cu 3d states and 3p states of neighboring S, which results in an extreme unbalanced spin-population in the spin-split impurity bands near the Fermi level. Finally, we also discuss further issues of the Cu induced magnetism of 1L-MoS2 such as investigation of additional charge states, the Cu doping at the S site instead of the Mo site, and the Cu adatom on the layer (i.e., 1L-MoS2). This journal is
AB - The magnetism of the 3d transition-metal (TM) doped single-layer (1L) MoS2, where the Mo atom is partially replaced by the 3d TM atom, is investigated using the first-principles density functional calculations. In a series of 3d TM doped 1L-MoS2's, the induced spin polarizations are negligible for Sc, Ti, and Cr dopings, while the induced spin polarizations are confirmed for V, Mn, Fe, Co, Ni, Cu, and Zn dopings and the systems become magnetic. Especially, the Cu doped system shows unexpectedly strong magnetism although Cu is nonmagnetic in its bulk state. The driving force is found to be a strong hybridization between Cu 3d states and 3p states of neighboring S, which results in an extreme unbalanced spin-population in the spin-split impurity bands near the Fermi level. Finally, we also discuss further issues of the Cu induced magnetism of 1L-MoS2 such as investigation of additional charge states, the Cu doping at the S site instead of the Mo site, and the Cu adatom on the layer (i.e., 1L-MoS2). This journal is
UR - http://www.scopus.com/inward/record.url?scp=84898799891&partnerID=8YFLogxK
U2 - 10.1039/c4cp00247d
DO - 10.1039/c4cp00247d
M3 - Article
AN - SCOPUS:84898799891
SN - 1463-9076
VL - 16
SP - 8990
EP - 8996
JO - Physical Chemistry Chemical Physics
JF - Physical Chemistry Chemical Physics
IS - 19
ER -