Translocation of bio-functionalized magnetic beads using smart magnetophoresis

S. Anandakumar, V. Sudha Rani, Sunjong Oh, B. L. Sinha, Migaku Takahashi, Cheol Gi Kim

Research output: Contribution to journalArticlepeer-review

30 Scopus citations

Abstract

We demonstrate real time on-chip translocation of bio-functionalized superparamagnetic beads on a silicon surface in a solution using a magnetophoresis technique. The superparamagnetic beads act as biomolecule carriers. Fluorescent-labeled Atto-520 biotin was loaded to streptavidin-coated magnetic beads (Dynabead® M-280) by means of ligand-receptor interactions. The magnetic pathways were patterned lithographically such that semi-elliptical Ni80Fe20 elements were arranged sequentially for a few hundred micrometers in length. An external rotating magnetic field was used to drive translational forces on the magnetic beads that were proportional to the product of the field strength and its gradient. The translational force at the curving edge of the pathway element of 6μm diameter was calculated to be ∼1.2pN for an applied field of 7.9kAm-1. However, the force at the flat edge was calculated to be ∼0.16pN. The translational force was larger than the drag force and thus allowed the magnetic beads to move in a directional way along the curving edge of the pathway. However, the force was not sufficient to move the beads along the flat edge. The top and bottom curving edge semi-elliptical NiFe pathways were obliquely-arranged on the left and right sides of the converging site, respectively. This caused a central translational force that allowed the converging and diverging of the Atto-520 biotin loaded streptavidin magnetic beads at a particular site.

Original languageEnglish
Pages (from-to)1755-1758
Number of pages4
JournalBiosensors and Bioelectronics
Volume26
Issue number4
DOIs
StatePublished - 15 Dec 2010

Bibliographical note

Funding Information:
This research was supported by a World Class University (WCU) program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (R32-20026).

Keywords

  • Biotin
  • Magnetic beads
  • Magnetophoresis
  • Semi-elliptical NiFe pathways
  • Streptavidin

Fingerprint

Dive into the research topics of 'Translocation of bio-functionalized magnetic beads using smart magnetophoresis'. Together they form a unique fingerprint.

Cite this