Abstract
The electrochemical CO2reduction reaction (CO2RR), which converts CO2into value-added feedstocks and renewable fuels, has been increasingly studied as a next-generation energy and environmental solution. Here, we report that single-atom metal sites distributed around active materials can enhance the CO2RR performance by controlling the Lewis acidity-based local CO2concentration. By utilizing the oxidation Gibbs free energy difference between silver (Ag), zinc (Zn), and carbon (C), we can produce Ag nanoparticle-embedded carbon nanofibers (CNFs) where Zn is atomically dispersed by a one-pot, self-forming thermal calcination process. The CO2RR performance of AgZn-CNF was investigated by a flow cell with a gas diffusion electrode (GDE). Compared to Ag-CNFs without Zn species (53% at −0.85 Vvs.RHE), the faradaic efficiency (FE) of carbon monoxide (CO) was approximately 20% higher in AgZn-CNF (75% at −0.82 Vvs.RHE) with 1 M KOH electrolyte.
Original language | English |
---|---|
Pages (from-to) | 24702-24708 |
Number of pages | 7 |
Journal | RSC Advances |
Volume | 11 |
Issue number | 40 |
DOIs | |
State | Published - 7 Jul 2021 |
Bibliographical note
Publisher Copyright:© The Royal Society of Chemistry 2021.