TY - JOUR
T1 - The HOOK region of voltage-gated Ca2+ channel β subunits senses and transmits PIP2 signals to the gate
AU - Park, Cheon Gyu
AU - Park, Yongsoo
AU - Suh, Byung Chang
N1 - Publisher Copyright:
© 2017 Park et al.
PY - 2017
Y1 - 2017
N2 - The β subunit of voltage-gated Ca2+ (CaV) channels plays an important role in regulating gating of the a1 pore-forming subunit and its regulation by phosphatidylinositol 4,5-bisphosphate (PIP2). Subcellular localization of the CaV β subunit is critical for this effect; N-terminal-dependent membrane targeting of the β subunit slows inactivation and decreases PIP2 sensitivity. Here, we provide evidence that the HOOK region of the β subunit plays an important role in the regulation of CaV biophysics. Based on amino acid composition, we broadly divide the HOOK region into three domains: S (polyserine), A (polyacidic), and B (polybasic). We show that a β subunit containing only its A domain in the HOOK region increases inactivation kinetics and channel inhibition by PIP2 depletion, whereas a β subunit with only a B domain decreases these responses. When both the A and B domains are deleted, or when the entire HOOK region is deleted, the responses are elevated. Using a peptide-to-liposome binding assay and confocal microscopy, we find that the B domain of the HOOK region directly interacts with anionic phospholipids via polybasic and two hydrophobic Phe residues. The β2c-short subunit, which lacks an A domain and contains fewer basic amino acids and no Phe residues in the B domain, neither associates with phospholipids nor affects channel gating dynamically. Together, our data suggest that the flexible HOOK region of the β subunit acts as an important regulator of CaV channel gating via dynamic electrostatic and hydrophobic interaction with the plasma membrane.
AB - The β subunit of voltage-gated Ca2+ (CaV) channels plays an important role in regulating gating of the a1 pore-forming subunit and its regulation by phosphatidylinositol 4,5-bisphosphate (PIP2). Subcellular localization of the CaV β subunit is critical for this effect; N-terminal-dependent membrane targeting of the β subunit slows inactivation and decreases PIP2 sensitivity. Here, we provide evidence that the HOOK region of the β subunit plays an important role in the regulation of CaV biophysics. Based on amino acid composition, we broadly divide the HOOK region into three domains: S (polyserine), A (polyacidic), and B (polybasic). We show that a β subunit containing only its A domain in the HOOK region increases inactivation kinetics and channel inhibition by PIP2 depletion, whereas a β subunit with only a B domain decreases these responses. When both the A and B domains are deleted, or when the entire HOOK region is deleted, the responses are elevated. Using a peptide-to-liposome binding assay and confocal microscopy, we find that the B domain of the HOOK region directly interacts with anionic phospholipids via polybasic and two hydrophobic Phe residues. The β2c-short subunit, which lacks an A domain and contains fewer basic amino acids and no Phe residues in the B domain, neither associates with phospholipids nor affects channel gating dynamically. Together, our data suggest that the flexible HOOK region of the β subunit acts as an important regulator of CaV channel gating via dynamic electrostatic and hydrophobic interaction with the plasma membrane.
UR - http://www.scopus.com/inward/record.url?scp=85012941633&partnerID=8YFLogxK
U2 - 10.1085/jgp.201611677
DO - 10.1085/jgp.201611677
M3 - Article
C2 - 28087621
AN - SCOPUS:85012941633
SN - 0022-1295
VL - 149
SP - 261
EP - 276
JO - Journal of General Physiology
JF - Journal of General Physiology
IS - 2
ER -