The critical role of interference control in metaphor comprehension evidenced by the drift–diffusion model

Hee Dong Yoon, Minho Shin, Hyeon Ae Jeon

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

We address the question of, among several executive functions, which one has a strong influence on metaphor comprehension. To this end, participants took part in a metaphor comprehension task where metaphors had varying levels of familiarity (familiar vs. novel metaphors) with different conditions of context (supporting vs. opposing contexts). We scrutinized each participant’s detailed executive functions using seven neuropsychological tests. More interestingly, we modelled their responses in metaphor comprehension using the drift–diffusion model, in an attempt to provide more systematic accounts of the processes underlying metaphor comprehension. Results showed that there were significant negative correlations between response times in metaphor comprehension and scores of the Controlled Oral Word Association Test (COWAT)-Semantic, suggesting that better performances in comprehending metaphors were strongly associated with better interference control. Using the drift–diffusion model, we found that the familiarity, compared to context, had greater leverage in the decision process for metaphor comprehension. Moreover, individuals with better performance in the COWAT-Semantic test demonstrated higher drift rates. In conclusion, with more fine-grained analysis of the decisions involved in metaphor comprehension using the drift–diffusion model, we argue that interference control plays an important role in processing metaphors.

Original languageEnglish
Article number19292
JournalScientific Reports
Volume11
Issue number1
DOIs
StatePublished - Dec 2021

Bibliographical note

Publisher Copyright:
© 2021, The Author(s).

Fingerprint

Dive into the research topics of 'The critical role of interference control in metaphor comprehension evidenced by the drift–diffusion model'. Together they form a unique fingerprint.

Cite this