TY - JOUR
T1 - Synergistic halide-sulfide hybrid solid electrolytes for Ni-rich cathodes design guided by digital twin for all-solid-State Li batteries
AU - Kim, Jong Seok
AU - Jung, Seungwon
AU - Kwak, Hiram
AU - Han, Yoonjae
AU - Kim, Suhwan
AU - Lim, Jongwoo
AU - Lee, Yong Min
AU - Jung, Yoon Seok
N1 - Publisher Copyright:
© 2022 Elsevier B.V.
PY - 2023/1
Y1 - 2023/1
N2 - Halide solid electrolytes are a promising candidate for all-solid-state Li batteries (ASLBs) owing to their mechanical sintering ability and excellent (electro)chemical oxidation stability. However, these advantages are counteracted by the lower Li+ conductivities and higher specific densities compared with those of sulfides. Herein, a novel halide-sulfide hybrid catholyte design for Ni-rich layered oxide cathodes for ASLBs is reported. In a hybrid catholyte, Li3YCl6 (0.40 mS cm−1) coatings protect the surface of Li[Ni0.88Co0.11Al0.01]O2 while Li6PS5Cl (1.80 mS cm−1) serves as a Li+ highway. Li[Ni0.88Co0.11Al0.01]O2 cathodes with an optimal fraction of Li3YCl6, 10 wt% with respect to Li [Ni0.88Co0.11Al0.01]O2, substantially outperform electrodes using either Li6PS5Cl or Li3YCl6 in terms of capacity (202 vs. 171 or 191 mA h g−1 at 0.1C, respectively), initial Coulombic efficiency, rate capability, and cycling performance. The superiority of Li3YCl6 for interfacial stability in the Li3YCl6-coated electrode to the electrode without Li3YCl6 is confirmed by complementary analysis. Moreover, the digital twin model is successfully established and reveals electrically isolated Li[Ni0.88Co0.11Al0.01]O2 particles when 14 wt% Li3YCl6 is used. This insight leads to the development of a mixed conductor coating consisting of Li3YCl6 and carbon, further enhancing the performance: e.g., 134 vs. 53 mA h g−1 at 2C.
AB - Halide solid electrolytes are a promising candidate for all-solid-state Li batteries (ASLBs) owing to their mechanical sintering ability and excellent (electro)chemical oxidation stability. However, these advantages are counteracted by the lower Li+ conductivities and higher specific densities compared with those of sulfides. Herein, a novel halide-sulfide hybrid catholyte design for Ni-rich layered oxide cathodes for ASLBs is reported. In a hybrid catholyte, Li3YCl6 (0.40 mS cm−1) coatings protect the surface of Li[Ni0.88Co0.11Al0.01]O2 while Li6PS5Cl (1.80 mS cm−1) serves as a Li+ highway. Li[Ni0.88Co0.11Al0.01]O2 cathodes with an optimal fraction of Li3YCl6, 10 wt% with respect to Li [Ni0.88Co0.11Al0.01]O2, substantially outperform electrodes using either Li6PS5Cl or Li3YCl6 in terms of capacity (202 vs. 171 or 191 mA h g−1 at 0.1C, respectively), initial Coulombic efficiency, rate capability, and cycling performance. The superiority of Li3YCl6 for interfacial stability in the Li3YCl6-coated electrode to the electrode without Li3YCl6 is confirmed by complementary analysis. Moreover, the digital twin model is successfully established and reveals electrically isolated Li[Ni0.88Co0.11Al0.01]O2 particles when 14 wt% Li3YCl6 is used. This insight leads to the development of a mixed conductor coating consisting of Li3YCl6 and carbon, further enhancing the performance: e.g., 134 vs. 53 mA h g−1 at 2C.
KW - All-solid-state lithium batteries
KW - Digital twins
KW - Electrochemical stabilities
KW - Halide solid electrolytes
KW - Sulfide solid electrolytes
UR - http://www.scopus.com/inward/record.url?scp=85143344928&partnerID=8YFLogxK
U2 - 10.1016/j.ensm.2022.11.038
DO - 10.1016/j.ensm.2022.11.038
M3 - Article
AN - SCOPUS:85143344928
SN - 2405-8297
VL - 55
SP - 193
EP - 204
JO - Energy Storage Materials
JF - Energy Storage Materials
ER -