Abstract
PEDOT:PSS, an ionic polymer mixture of positively-charged poly-3,4-ethylenedioxythiophene (PEDOT+) and negatively-charged poly-styrenesulfonate (PSS−), is a water-processable and environmentally-benign organic semiconductor and electrochemical transistor, which plays a key role in organic (bio)electronic devices. However, pristine PEDOT:PSS films form 10-to-30-nm granular domains, where conducting-but-hydrophobic PEDOT-rich cores are surrounded by hydrophilic-but-insulating PSS-rich shells. Such morphology makes PEDOT:PSS water-soluble and thermally stable but very poor in conductivity. A tremendous amount of effort has been made to enhance the conductivity of PEDOT:PSS by restoring the extended conduction network of PEDOT. Recently, remarkable ~5000-fold improvements of conductivity have been achieved by mixing PEDOT:PSS with proper ionic liquids (ILs). In a series of free energy estimations using density functional theory calculation and molecular dynamics simulation, we have demonstrated that the classic hard-soft acid–base (or cation-anion) principle of chemistry plays an important role in such improvements. Ion exchange between PEDOT+:PSS− and A+:X− ILs helps PEDOT+ to decouple from PSS− and to grow into large-scale conducting domains of π-stacked PEDOT+ decorated by IL anions X−. Thus, the most spontaneous decoupling between soft (hydrophobic) PEDOT+ and hard (hydrophilic) PSS− would be induced by strong interaction with soft anions X− and hard cations A+, respectively. Such hard-cation-soft-anion principles have led us to design ILs containing extremely hydrophilic (i.e., protic) cations and hydrophobic anions. Not only they indeed improve the conductivity of PEDOT:PSS but also enhance its stretchability as well. In summary, our modeling offered molecular-level insights on the morphological, electrical, and mechanical properties of PEDOT:PSS and a molecular-interaction-based enhancement strategy for intrinsically stretchable conductive polymers.
Original language | English |
---|---|
Pages (from-to) | 896-905 |
Number of pages | 10 |
Journal | Bulletin of the Korean Chemical Society |
Volume | 45 |
Issue number | 11 |
DOIs | |
State | Published - Nov 2024 |
Bibliographical note
Publisher Copyright:© 2024 The Author(s). Bulletin of the Korean Chemical Society published by Korean Chemical Society and Wiley-VCH GmbH.
Keywords
- PEDOT:PSS
- conductivity
- density functional theory
- hardness
- hydrophilicity
- ion exchange free energy
- ionic conducting polymer
- ionic liquid
- molecular dynamics simulation
- morphology
- stretchability