Abstract
We prepared LiMn2O4 nanoparticle-decorated multiwalled carbon nanotube (MWCNT) films as a cathode electrode for lithium-ion batteries using a spray-deposition method. The surface morphologies and structures of the films were characterized using scanning electron microscopy and X-ray diffraction analysis. The results revealed that fairly homogeneous spinel LiMn2O4 nanopowder-based films with the grain size of 20-50 nm were successfully formed on the surface of the MWCNTs. Cyclic voltammetry confirmed the presence of typical spinel LiMn2O 4 structure on the MWCNTs with showing stronger oxidative peaks of better reversibility as compared to a pure LiMn2O4 electrode. The spray-deposited LiMn2O4-decorated MWCNT film was also found to have a higher discharge capacity (97.2 mAh/g) than the as-deposited LiMn2O4 film (75.2 mAh/g) as well as excellent cycling stability. These characteristics are due to the fact that MWCNTs provide the cathode with multiple electron tunneling pathways and a mechanically strong framework.
Original language | English |
---|---|
Pages (from-to) | 68-71 |
Number of pages | 4 |
Journal | Thin Solid Films |
Volume | 547 |
DOIs | |
State | Published - 29 Nov 2013 |
Bibliographical note
Funding Information:This work was supported by a grant from Korea University (2013).
Keywords
- LiMnO composite
- MWCNT film
- Spray deposition