Abstract
In recent years, researchers have developed spray deposition technology to fabricate tin oxide electron transport layer (ETL) with the aim of manufacturing high-efficiency, large-area perovskite solar cell (PSC). However, the power conversion efficiency (PCE) of PSC based on sprayed SnO2 ETL remains inferior to that of the spin-coated SnO2 ETL. Herein, the combined use of spray deposition and genetically engineered M13 bacteriophages for the deposition of M13-SnO2 biohybrid ETL over large-area (62.5 cm2) substrates is demonstrated. The spray-deposited M13-SnO2 ETLs exhibit mesoporous morphologies with >85% transmittance in UV–vis region. Through the use of M13-SnO2 ETL, the sequential-deposited PSCs achieve a maximum PCE of ≈22.1%. The improved performance of the PSC is attributable to the mesoporous morphology of M13-SnO2 ETL that facilitates the growth of larger perovskite grains. The PSCs based on M13-SnO2 ETLs also display highly consistent photovoltaic performance which manifests the excellent scalability of the spraying process. Furthermore, M13-SnO2-based PSCs exhibit higher ambient stability compared to the SnO2-based PSCs, showing that the use of M13 bacteriophage is incredibly beneficial to both the efficiency and stability of PSCs.
Original language | English |
---|---|
Article number | 2300065 |
Journal | Solar RRL |
Volume | 7 |
Issue number | 13 |
DOIs | |
State | Published - Jul 2023 |
Bibliographical note
Publisher Copyright:© 2023 Wiley-VCH GmbH.
Keywords
- M13 bacteriophage
- grain boundaries
- large area
- scalability
- tin oxide