Spin and valley-polarized multiple Fermi surfaces of α-RuCl3/bilayer graphene heterostructure

Soyun Kim, Jeonghoon Hong, Kenji Watanabe, Takashi Taniguchi, Joseph Falson, Jeongwoo Kim, Youngwook Kim

Research output: Contribution to journalArticlepeer-review

Abstract

We report the transport properties of α-RuCl3/bilayer graphene heterostructures, where carrier doping is induced by a work function difference, resulting in distinct electron and hole populations in α-RuCl3 and bilayer graphene, respectively. Through a comprehensive analysis of multi-channel transport signatures, including Hall measurements and quantum oscillation, we unveil significant band modifications within the system. In particular, we observe the emergence of spin and valley-polarized multiple hole-type Fermi pockets, originating from the spin-selective band hybridization between α-RuCl3 and bilayer graphene, breaking the spin degree of freedom. Unlike the α-RuCl3/monolayer graphene system, the presence of different hybridization strengths between α-RuCl3 and the top and bottom graphene layers leads to an asymmetric behavior of the two layers, confirmed by effective mass experiments, resulting in the manifestation of valley-polarized Fermi pockets. These compelling findings establish α-RuCl3 proximitized to bilayer graphene as an outstanding platform for engineering its unique low-energy band structure.

Original languageEnglish
Article number173101
JournalApplied Physics Letters
Volume123
Issue number17
DOIs
StatePublished - 23 Oct 2023

Bibliographical note

Publisher Copyright:
© 2023 Author(s).

Fingerprint

Dive into the research topics of 'Spin and valley-polarized multiple Fermi surfaces of α-RuCl3/bilayer graphene heterostructure'. Together they form a unique fingerprint.

Cite this