TY - JOUR
T1 - Single-layer CdPSe3
T2 - A promising thermoelectric material persisting in high temperatures
AU - Yun, Won Seok
AU - Lee, J. D.
N1 - Publisher Copyright:
© 2019 Author(s).
PY - 2019/11/4
Y1 - 2019/11/4
N2 - Searching for two-dimensional (2D) functional semiconductors with excellent performance is a central issue in the field of 2D materials. Using the first-principles calculation combined with the Boltzmann transport theory, we survey the thermodynamic stabilities, electronic transports, and thermoelectric performances of single-layer (1L-) CdPSe3, which is a transition-metal phosphorus trichalcogenide. Through an investigation of the cleavage energy, we reveal that an isolation into 1L-CdPSe3 from the bulk form is guaranteed, which is in addition thermodynamically stable, as confirmed by both the first-principles molecular dynamics and the phonon spectrum. Electron and hole mobilities of 1L-CdPSe3 are calculated and found to be ∼390 and ∼300 cm2 V-1 s-1, respectively. The lattice thermal conductivity of 1L-CdPSe3 is shown to be as low as ∼1.25 W m-1 K-1 at room temperature. Finally, the thermoelectric figure of merit of 1L-CdPSe3 is calculated to be ∼1.2 under the p-type optimal doping at a high temperature (1200 K). This suggests that 1L-CdPSe3 could be a promising candidate for pursuing an excellent thermoelectric functionality, in particular, valid even at high temperatures.
AB - Searching for two-dimensional (2D) functional semiconductors with excellent performance is a central issue in the field of 2D materials. Using the first-principles calculation combined with the Boltzmann transport theory, we survey the thermodynamic stabilities, electronic transports, and thermoelectric performances of single-layer (1L-) CdPSe3, which is a transition-metal phosphorus trichalcogenide. Through an investigation of the cleavage energy, we reveal that an isolation into 1L-CdPSe3 from the bulk form is guaranteed, which is in addition thermodynamically stable, as confirmed by both the first-principles molecular dynamics and the phonon spectrum. Electron and hole mobilities of 1L-CdPSe3 are calculated and found to be ∼390 and ∼300 cm2 V-1 s-1, respectively. The lattice thermal conductivity of 1L-CdPSe3 is shown to be as low as ∼1.25 W m-1 K-1 at room temperature. Finally, the thermoelectric figure of merit of 1L-CdPSe3 is calculated to be ∼1.2 under the p-type optimal doping at a high temperature (1200 K). This suggests that 1L-CdPSe3 could be a promising candidate for pursuing an excellent thermoelectric functionality, in particular, valid even at high temperatures.
UR - http://www.scopus.com/inward/record.url?scp=85074663825&partnerID=8YFLogxK
U2 - 10.1063/1.5123442
DO - 10.1063/1.5123442
M3 - Article
AN - SCOPUS:85074663825
SN - 0003-6951
VL - 115
JO - Applied Physics Letters
JF - Applied Physics Letters
IS - 19
M1 - 5123442
ER -