TY - JOUR
T1 - Silver fractal dendrites for highly sensitive and transparent polymer thermistors
AU - Kim, Jongyoun
AU - Lee, Donghwa
AU - Park, Kyutae
AU - Goh, Hyeonjin
AU - Lee, Youngu
N1 - Publisher Copyright:
© The Royal Society of Chemistry.
PY - 2019/9/7
Y1 - 2019/9/7
N2 - Effective temperature measurement using non-invasive sensors finds applications in virtually every field of human life. Recently, significant efforts have been made toward developing polymer positive temperature coefficient (PTC) thermistors because they have advantages including flexibility, conformability, and biocompatibility. However, most polymer PTC thermistors still have issues such as low sensitivity, low optical transparency, and poor operational durability because of low electrical conductivity and inefficient hopping transport of conventional conductive filler. Here, a highly sensitive and transparent polymer thermistor composed of silver fractal dendrites (AgFDs) and a polyacrylate (PA) matrix has been successfully demonstrated. A AgFDs-PA composite film exhibits a superior PTC effect (about 104 Ω °C-1) around 35 °C because of the high electrical conductivity of the AgFDs and the quantum tunneling effect among them. A thermistor based on the AgFDs-PA composite shows excellent sensitivity, PTC intensity (∼107), and sensing resolution through dramatic resistance changes from thousands to billions of ohms in the human body temperature range (34-37 °C). Moreover, it exhibits excellent optical transparency (82.14%), mechanical flexibility, and operational durability. An electrical impedance spectroscopy analysis shows that the distance between the AgFDs increases with temperature, which implies that the quantum tunneling effect amplified by the branches of the AgFDs has a significant influence on the changes in resistance. This characteristic makes the thermistor immediately suitable for monitoring body temperature. We anticipate that the new thermistor based on the AgFDs-PA composite can be a key component of various sensing applications.
AB - Effective temperature measurement using non-invasive sensors finds applications in virtually every field of human life. Recently, significant efforts have been made toward developing polymer positive temperature coefficient (PTC) thermistors because they have advantages including flexibility, conformability, and biocompatibility. However, most polymer PTC thermistors still have issues such as low sensitivity, low optical transparency, and poor operational durability because of low electrical conductivity and inefficient hopping transport of conventional conductive filler. Here, a highly sensitive and transparent polymer thermistor composed of silver fractal dendrites (AgFDs) and a polyacrylate (PA) matrix has been successfully demonstrated. A AgFDs-PA composite film exhibits a superior PTC effect (about 104 Ω °C-1) around 35 °C because of the high electrical conductivity of the AgFDs and the quantum tunneling effect among them. A thermistor based on the AgFDs-PA composite shows excellent sensitivity, PTC intensity (∼107), and sensing resolution through dramatic resistance changes from thousands to billions of ohms in the human body temperature range (34-37 °C). Moreover, it exhibits excellent optical transparency (82.14%), mechanical flexibility, and operational durability. An electrical impedance spectroscopy analysis shows that the distance between the AgFDs increases with temperature, which implies that the quantum tunneling effect amplified by the branches of the AgFDs has a significant influence on the changes in resistance. This characteristic makes the thermistor immediately suitable for monitoring body temperature. We anticipate that the new thermistor based on the AgFDs-PA composite can be a key component of various sensing applications.
UR - http://www.scopus.com/inward/record.url?scp=85071258180&partnerID=8YFLogxK
U2 - 10.1039/c9nr04233d
DO - 10.1039/c9nr04233d
M3 - Article
C2 - 31265046
AN - SCOPUS:85071258180
SN - 2040-3364
VL - 11
SP - 15464
EP - 15471
JO - Nanoscale
JF - Nanoscale
IS - 33
ER -