Self-Mutating Network for Domain Adaptive Segmentation of Aerial Images

Kyungsu Lee, Haeyun Lee, Jae Youn Hwang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

6 Scopus citations

Abstract

The domain-adaptive semantic segmentation of aerial images using a deep-learning technique is still challenging owing to the domain gaps between aerial images obtained in different areas. Currently, various convolutional neural network (CNN)-based domain adaptation methods have been developed to decrease the domain gaps. However, they still show poor performance for object segmentation when they are applied to images from other domains. In this paper, we propose a novel CNN-based self-mutating network (SMN), which can adaptively adjust the parameter values of convolutional filters as a response to the domain of an input image for better domain-adaptive segmentation. For the SMN, the parameter mutation technique was devised for adaptively changing parameters, and a parameter fluctuation technique was developed to randomly convulse the parameters. By adopting the parameter mutation and fluctuation, adaptive self-changing and fine-tuning of parameters can be realized for images from different domains, resulting in better prediction in domain-adaptive segmentation. Meanwhile, the results of the ablation study indicate that the SMN provided 11.19% higher Intersection over Union values than other state-of-the-art methods, demonstrating its potential for the domain-adaptive segmentation of aerial images.

Original languageEnglish
Title of host publicationProceedings - 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages7048-7057
Number of pages10
ISBN (Electronic)9781665428125
DOIs
StatePublished - 2021
Event18th IEEE/CVF International Conference on Computer Vision, ICCV 2021 - Virtual, Online, Canada
Duration: 11 Oct 202117 Oct 2021

Publication series

NameProceedings of the IEEE International Conference on Computer Vision
ISSN (Print)1550-5499

Conference

Conference18th IEEE/CVF International Conference on Computer Vision, ICCV 2021
Country/TerritoryCanada
CityVirtual, Online
Period11/10/2117/10/21

Bibliographical note

Publisher Copyright:
© 2021 IEEE

Fingerprint

Dive into the research topics of 'Self-Mutating Network for Domain Adaptive Segmentation of Aerial Images'. Together they form a unique fingerprint.

Cite this