Abstract
The photovoltaic performance of Sb2Se3-sensitized heterojunction solar cells, which were fabricated by a simple deposition of Sb2Se3 on mesoporous TiO2 by an approach that features multiple cycles of spin coating with a single-source precursor solution and thermal decomposition, is reported. Poly[2,6-(4,4-bis(2-ethylhexyl)-4H- cyclopenta[2,1-b;3,4-b']dithiophene)- alt-4,7(2,1,3-benzothioadiazole)] was used as the hole-transporting material. The most efficient cell exhibited a short-circuit current density of 22.3 mAcm-2, an open-circuit voltage of 304.5 mV, and a fill factor of 47.2%, yielding a power conversion efficiency of 3.21% under standard test conditions (irradiation of 1000 Wm-2, air mass=1.5 G). The results of this study imply that the developed approach has a high potential as a simple and effective route for the fabrication of efficient and inexpensive solar cells.
Original language | English |
---|---|
Pages (from-to) | 1329-1333 |
Number of pages | 5 |
Journal | Angewandte Chemie - International Edition |
Volume | 53 |
Issue number | 5 |
DOIs | |
State | Published - 27 Jan 2014 |
Keywords
- Antimony
- Mesoporous materials
- Organic- inorganiC-Hybrid composites
- Selenium
- Solar cells