Abstract
We suggested a facile route to fabricate top-gate random network devices of ZnO nanorods (NRs) embedded in an ion-gel dielectric layer. This route can be used for large-scale integration of ZnO NR networks. The transistors showed very good performances with low operational voltages, high field-effect mobility (∼1.63 cm2 V-1 s-1), and a greatly enhanced on/off ratio (∼104). The ion-gel dielectric provided strong electrostatic doping in ZnO NRs that led to ohmic contact between ZnO and the Au electrode. A high-performance (gain ∼12) complementary inverter was demonstrated by integrating an n-type ZnO NR network device and a p-type device based on electrospun poly(3-hexylthiophene) (P3HT) nanofibers.
Original language | English |
---|---|
Pages (from-to) | 7393-7397 |
Number of pages | 5 |
Journal | Journal of Materials Chemistry |
Volume | 20 |
Issue number | 35 |
DOIs | |
State | Published - 21 Sep 2010 |