TY - JOUR
T1 - Pulse Electrodeposition of a Superhydrophilic and Binder-Free Ni-Fe-P Nanostructure as Highly Active and Durable Electrocatalyst for Both Hydrogen and Oxygen Evolution Reactions
AU - Barati Darband, Ghasem
AU - Aliofkhazraei, Mahmood
AU - Hyun, Suyeon
AU - Shanmugam, Sangaraju
N1 - Publisher Copyright:
© 2020 American Chemical Society. All rights reserved.
PY - 2020/12/2
Y1 - 2020/12/2
N2 - Development and fabrication of electrodes with favorable electrocatalytic activity, low-cost, and excellent electrocatalytic durability are one of the most important issues in the hydrogen production area using the electrochemical water splitting process. We use the pulse electrodeposition method as a versatile and cost-effective approach to synthesize three-dimensional Ni-Fe-P electrocatalysts on nickel nanostructures under various applied frequencies and duration times, in which nanostructures exhibit excellent intrinsic electrocatalytic activity. Benefiting from the three-dimensional structure, as well as the simultaneous presence of the three elements nickel, iron, and phosphorus, the electrode fabricated at the optimal conditions has indicated outstanding electrocatalytic activity with a η10 of 66 and 198 mV for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively, in a 1.0 M KOH solution. Also, the water electrolysis cell constructed with this electrode and tested as a bifunctional electrode exhibited 1.508 V for 10 mA cm-2 in overall water splitting. In addition, the lowest amount of potential change in 100 mA cm-2 was observed for HER and OER, indicating excellent electrocatalytic stability. This study proposes a binder-free and economical technique for the synthesis of three-dimensional electrocatalysts.
AB - Development and fabrication of electrodes with favorable electrocatalytic activity, low-cost, and excellent electrocatalytic durability are one of the most important issues in the hydrogen production area using the electrochemical water splitting process. We use the pulse electrodeposition method as a versatile and cost-effective approach to synthesize three-dimensional Ni-Fe-P electrocatalysts on nickel nanostructures under various applied frequencies and duration times, in which nanostructures exhibit excellent intrinsic electrocatalytic activity. Benefiting from the three-dimensional structure, as well as the simultaneous presence of the three elements nickel, iron, and phosphorus, the electrode fabricated at the optimal conditions has indicated outstanding electrocatalytic activity with a η10 of 66 and 198 mV for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively, in a 1.0 M KOH solution. Also, the water electrolysis cell constructed with this electrode and tested as a bifunctional electrode exhibited 1.508 V for 10 mA cm-2 in overall water splitting. In addition, the lowest amount of potential change in 100 mA cm-2 was observed for HER and OER, indicating excellent electrocatalytic stability. This study proposes a binder-free and economical technique for the synthesis of three-dimensional electrocatalysts.
KW - Ni-Fe-P nanostructure
KW - hydrogen evolution reaction
KW - oxygen evolution reaction
KW - pulse electrodeposition
UR - http://www.scopus.com/inward/record.url?scp=85096525058&partnerID=8YFLogxK
U2 - 10.1021/acsami.0c13648
DO - 10.1021/acsami.0c13648
M3 - Article
C2 - 33206495
AN - SCOPUS:85096525058
SN - 1944-8244
VL - 12
SP - 53719
EP - 53730
JO - ACS Applied Materials and Interfaces
JF - ACS Applied Materials and Interfaces
IS - 48
ER -