Precise separation of adjacent nuclei using a siamese neural network

Miguel Luna, Mungi Kwon, Sang Hyun Park

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

11 Scopus citations

Abstract

Nuclei segmentation in digital histopathology images plays an important role in distinguishing stages of cancer. Recently, deep learning based methods for segmenting the nuclei have been proposed, but precise boundary delineation of adjacent nuclei is still challenging. To address this problem, we propose a post processing method which can accurately separate the adjacent nuclei when an image and a predicted nuclei segmentation are given. Specifically, we propose a novel deep neural network which can predict whether adjacent two instances belong to a single nuclei or separate nuclei. By borrowing the idea of decision making with Siamese networks, the proposed network learns the affinity between two adjacent instances and surrounding features from a large amount of adjacent nuclei even though the training data is limited. Furthermore, we estimate the segmentation of instances through a decoding network and then use their overlapping Dice score for class prediction to improve the classification accuracy. The proposed method effectively alleviates the over-fitting problem and compatible with any cell segmentation algorithms. Experimental results show that our proposed method significantly improves the cell separation accuracy.

Original languageEnglish
Title of host publicationMedical Image Computing and Computer Assisted Intervention – MICCAI 2019 - 22nd International Conference, Proceedings
EditorsDinggang Shen, Pew-Thian Yap, Tianming Liu, Terry M. Peters, Ali Khan, Lawrence H. Staib, Caroline Essert, Sean Zhou
PublisherSpringer Science and Business Media Deutschland GmbH
Pages577-585
Number of pages9
ISBN (Print)9783030322380
DOIs
StatePublished - 2019
Event22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019 - Shenzhen, China
Duration: 13 Oct 201917 Oct 2019

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume11764 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019
Country/TerritoryChina
CityShenzhen
Period13/10/1917/10/19

Bibliographical note

Publisher Copyright:
© 2019, Springer Nature Switzerland AG.

Keywords

  • Classification
  • Instance segmentation
  • Nuclei segmentation
  • Separation
  • Siamese neural networks

Fingerprint

Dive into the research topics of 'Precise separation of adjacent nuclei using a siamese neural network'. Together they form a unique fingerprint.

Cite this