Physical Attack on Monocular Depth Estimation with Optimal Adversarial Patches

Zhiyuan Cheng, James Liang, Hongjun Choi, Guanhong Tao, Zhiwen Cao, Dongfang Liu, Xiangyu Zhang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

61 Scopus citations

Abstract

Deep learning has substantially boosted the performance of Monocular Depth Estimation (MDE), a critical component in fully vision-based autonomous driving (AD) systems (e.g., Tesla and Toyota). In this work, we develop an attack against learning-based MDE. In particular, we use an optimization-based method to systematically generate stealthy physical-object-oriented adversarial patches to attack depth estimation. We balance the stealth and effectiveness of our attack with object-oriented adversarial design, sensitive region localization, and natural style camouflage. Using real-world driving scenarios, we evaluate our attack on concurrent MDE models and a representative downstream task for AD (i.e., 3D object detection). Experimental results show that our method can generate stealthy, effective, and robust adversarial patches for different target objects and models and achieves more than 6 m mean depth estimation error and 93% attack success rate (ASR) in object detection with a patch of 1/9 of the vehicle’s rear area. Field tests on three different driving routes with a real vehicle indicate that we cause over 6 m mean depth estimation error and reduce the object detection rate from 90.70% to 5.16% in continuous video frames.

Original languageEnglish
Title of host publicationComputer Vision – ECCV 2022 - 17th European Conference, Proceedings
EditorsShai Avidan, Gabriel Brostow, Moustapha Cissé, Giovanni Maria Farinella, Tal Hassner
PublisherSpringer Science and Business Media Deutschland GmbH
Pages514-532
Number of pages19
ISBN (Print)9783031198380
DOIs
StatePublished - 2022
Event17th European Conference on Computer Vision, ECCV 2022 - Tel Aviv, Israel
Duration: 23 Oct 202227 Oct 2022

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume13698 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference17th European Conference on Computer Vision, ECCV 2022
Country/TerritoryIsrael
CityTel Aviv
Period23/10/2227/10/22

Bibliographical note

Publisher Copyright:
© 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.

Keywords

  • Autonomous driving
  • Monocular depth estimation
  • Physical adversarial attack

Fingerprint

Dive into the research topics of 'Physical Attack on Monocular Depth Estimation with Optimal Adversarial Patches'. Together they form a unique fingerprint.

Cite this