One-Shot Federated Learning on Medical Data Using Knowledge Distillation with Image Synthesis and Client Model Adaptation

Myeongkyun Kang, Philip Chikontwe, Soopil Kim, Kyong Hwan Jin, Ehsan Adeli, Kilian M. Pohl, Sang Hyun Park

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

One-shot federated learning (FL) has emerged as a promising solution in scenarios where multiple communication rounds are not practical. Notably, as feature distributions in medical data are less discriminative than those of natural images, robust global model training with FL is non-trivial and can lead to overfitting. To address this issue, we propose a novel one-shot FL framework leveraging Image Synthesis and Client model Adaptation (FedISCA) with knowledge distillation (KD). To prevent overfitting, we generate diverse synthetic images ranging from random noise to realistic images. This approach (i) alleviates data privacy concerns and (ii) facilitates robust global model training using KD with decentralized client models. To mitigate domain disparity in the early stages of synthesis, we design noise-adapted client models where batch normalization statistics on random noise (synthetic images) are updated to enhance KD. Lastly, the global model is trained with both the original and noise-adapted client models via KD and synthetic images. This process is repeated till global model convergence. Extensive evaluation of this design on five small- and three large-scale medical image classification datasets reveals superior accuracy over prior methods. Code is available at https://github.com/myeongkyunkang/FedISCA.

Original languageEnglish
Title of host publicationMedical Image Computing and Computer Assisted Intervention – MICCAI 2023 - 26th International Conference, Proceedings
EditorsHayit Greenspan, Hayit Greenspan, Anant Madabhushi, Parvin Mousavi, Septimiu Salcudean, James Duncan, Tanveer Syeda-Mahmood, Russell Taylor
PublisherSpringer Science and Business Media Deutschland GmbH
Pages521-531
Number of pages11
ISBN (Print)9783031438943
DOIs
StatePublished - 2023
Event26th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2023 - Vancouver, Canada
Duration: 8 Oct 202312 Oct 2023

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume14221 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference26th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2023
Country/TerritoryCanada
CityVancouver
Period8/10/2312/10/23

Bibliographical note

Publisher Copyright:
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023.

Keywords

  • Client Model Adaptation
  • Image Synthesis
  • Knowledge Distillation
  • Noise
  • One-Shot Federated Learning

Fingerprint

Dive into the research topics of 'One-Shot Federated Learning on Medical Data Using Knowledge Distillation with Image Synthesis and Client Model Adaptation'. Together they form a unique fingerprint.

Cite this