TY - JOUR
T1 - Nominal kagome antiferromagnetic Mn3Sn
T2 - effects of excess Mn and its novel synthesis method
AU - Park, Jaemun
AU - Kim, Woo Yong
AU - Cho, Beopgil
AU - Choi, W. J.
AU - Kwon, Yong Seung
AU - Seo, Jungpil
AU - Park, Keeseong
N1 - Publisher Copyright:
© 2025 The Royal Society of Chemistry.
PY - 2025
Y1 - 2025
N2 - The antiferromagnetic (AFM) Weyl semimetal Mn3Sn has attracted significant interest due to its intriguing topological and transport properties. However, the reproducibility of experimental results has been limited, potentially stemming from the thermodynamically stable Mn3+xSn1−x phase, where excess Mn substitutes at Sn sites and alters its intrinsic helical ordering. In this study, we present a Bi flux-assisted recrystallization method for synthesizing high-quality nominal Mn3Sn single crystals. Our approach yields stoichiometric and homogeneous samples with the largest residual resistivity ratio (RRR > 23) and sharper magnetic phase transitions, confirming their high purity. While the triangular AFM phase at room temperature is independent of sample quality, the helical magnetic ordering exhibits strong quality dependence, with additional helical phases emerging between 250 K and 280 K. At low temperatures, the system retains a semimetallic nature, as evidenced by the lower Sommerfeld coefficient (γ), differential conductance (dI/dV) spectra, and magnetoresistance measurements. These findings highlight the interplay between chemical composition and magnetic phase transitions in Mn3Sn and establish a direct link between its helical ordering and electronic structure tuning. Our results not only provide a pathway for producing high-quality Mn3Sn single crystals but also offer a valuable platform for exploring unresolved aspects of its helical phases and potential applications in AFM spintronics.
AB - The antiferromagnetic (AFM) Weyl semimetal Mn3Sn has attracted significant interest due to its intriguing topological and transport properties. However, the reproducibility of experimental results has been limited, potentially stemming from the thermodynamically stable Mn3+xSn1−x phase, where excess Mn substitutes at Sn sites and alters its intrinsic helical ordering. In this study, we present a Bi flux-assisted recrystallization method for synthesizing high-quality nominal Mn3Sn single crystals. Our approach yields stoichiometric and homogeneous samples with the largest residual resistivity ratio (RRR > 23) and sharper magnetic phase transitions, confirming their high purity. While the triangular AFM phase at room temperature is independent of sample quality, the helical magnetic ordering exhibits strong quality dependence, with additional helical phases emerging between 250 K and 280 K. At low temperatures, the system retains a semimetallic nature, as evidenced by the lower Sommerfeld coefficient (γ), differential conductance (dI/dV) spectra, and magnetoresistance measurements. These findings highlight the interplay between chemical composition and magnetic phase transitions in Mn3Sn and establish a direct link between its helical ordering and electronic structure tuning. Our results not only provide a pathway for producing high-quality Mn3Sn single crystals but also offer a valuable platform for exploring unresolved aspects of its helical phases and potential applications in AFM spintronics.
UR - http://www.scopus.com/inward/record.url?scp=105005471714&partnerID=8YFLogxK
U2 - 10.1039/d5tc00455a
DO - 10.1039/d5tc00455a
M3 - Article
AN - SCOPUS:105005471714
SN - 2050-7526
JO - Journal of Materials Chemistry C
JF - Journal of Materials Chemistry C
ER -