Abstract
A novel and efficient chemical approach for the synthesis of Fe3O4/Au core/satellite nanocubes is reported. In a one-pot reaction, metallic Au nanodots were successfully deposited on the polyvinylpyrrolidone (PVP) functionalized Fe3O4 nanocube surface for the fabrication of a core/satellite structure (Fe3O4/Au) by the reduction of HAuCl4 using ammonia. Transmission electron microscopy and energy dispersive spectroscopy mapping revealed that small Au nanodots of about 2 nm average size decorated the surface of Fe3O4 nanocubes. X-ray diffraction data was used to confirm the formation of both the phases of a cubic inverse spinel structure for Fe3O4 and a bcc structure for Au in the core/satellite structure of Fe3O4/Au nanocubes. The magnetic properties of the seed Fe3O4 nanocubes and Fe3O4/Au core/satellite nanocubes were measured by using a superconducting quantum interference device at 300 K. For biological application purposes, the as-synthesized Fe3O4/Au core/satellite nanocubes were functionalized by cysteamine followed by successful immobilization of streptavidin protein as confirmed through the fluorescence confocal microscopy images.
Original language | English |
---|---|
Pages (from-to) | 2303-2309 |
Number of pages | 7 |
Journal | Dalton Transactions |
Volume | 46 |
Issue number | 7 |
DOIs | |
State | Published - 2017 |
Bibliographical note
Publisher Copyright:© The Royal Society of Chemistry.