Abstract
Nanostructured NiCo2O4 is directly grown on the surface of three-dimensional graphene-coated nickel foam (3D-GNF) by a facile electrodeposition technique and subsequent annealing. The resulting NiCo2O4 possesses a distinct flower or sheet morphology, tuned by potential or current variation electrodeposition, which are used as binder-free lithium-ion battery anodes for the first time. Both samples exhibit high lithium storage capacity, profiting from the unique binder-free electrode structures. The flower-type NiCo2O4 demonstrates high reversible discharge capacity (1459 mAh g-1 at 200 mA g-1) and excellent cyclability with around 71 % retention of the reversible capacity after 60 cycles, which are superior to the sheet-type NiCo2O4. Such superb performance can be attributed to high volume utilization efficiency with unique morphological character, a well-preserved connection between the active materials and the current collector, a short lithium-ion diffusion path, and fast electrolyte transfer in the binder-free NiCo2O4-coated 3D graphene structure. The simple preparation process and easily controllable morphology make the binder-free NiCo2O4/3D-GNF hybrid a potential material for commercial applications. Flower power: 3D nanostructured flower-type and sheet-type NiCo2O4/3D graphene-coated nickel foam composites were synthesized by a facile and tunable electrodeposition method. Both composites have mesoporous structure and exhibit high specific surface area, which favor not only higher Li storage capacity, but also excellent cycling performance as a binder-free electrode for lithium-ion batteries (see figure).
Original language | English |
---|---|
Pages (from-to) | 4422-4430 |
Number of pages | 9 |
Journal | Chemistry - A European Journal |
Volume | 22 |
Issue number | 13 |
DOIs | |
State | Published - 18 Mar 2016 |
Bibliographical note
Publisher Copyright:© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Keywords
- anodes
- graphene
- lithium-ion batteries
- morphology control
- nickel