Abstract
We report on the control of the electrical and the piezoelectric properties of ZnO nanorods (NRs) by incorporation of arsenic (As) elements via a low-temperature processed spin-on-dopant (SOD) method. The structural investigations for the SOD-treated ZnO NRs at different temperatures show a negligible change in morphology at temperatures up to 550 °C and melting of the ZnO NRs at 600 °C. Low-temperature photoluminescence (PL) spectra show gradual development of acceptor-related emission peaks with increasing SOD treatment temperature from 450 to 550 °C, which indicates the successful incorporation of As atoms into the ZnO NRs. An AsZn-2VZn shallow acceptor model is suggested by considering the formation energy of the interstitial point-defect complex for the modification of the electrical properties of ZnO NRs. A ZnO NR/n-Si heterojunction showed better rectifying behavior with increasing SOD treatment temperature, indicating better incorporation of As-dopants at higher SOD treatment temperatures. A piezoelectric nanogenerator was fabricated as a device application of the electrical-property-modified ZnO NRs. The nanogenerator showed enhanced piezoelectric output potential after doping due to the elimination of the screening effect by free charge carriers in the ZnO NRs.
Original language | English |
---|---|
Pages (from-to) | 930-935 |
Number of pages | 6 |
Journal | Journal of the Korean Physical Society |
Volume | 67 |
Issue number | 5 |
DOIs | |
State | Published - 26 Sep 2015 |
Bibliographical note
Publisher Copyright:© 2015, The Korean Physical Society.
Keywords
- Diode
- Doping
- Spin-on-dopant
- ZnO nanorod