Abstract
Strong-coupling between excitons and confined photonic modes can lead to the formation of new quasi-particles termed exciton-polaritons which can display a range of interesting properties such as super-fluidity, ultrafast transport and Bose-Einstein condensation. Strong-coupling typically occurs when an excitonic material is confided in a dielectric or plasmonic microcavity. Here, we show polaritons can form at room temperature in a range of chemically diverse, organic semiconductor thin films, despite the absence of an external cavity. We find evidence of strong light-matter coupling via angle-dependent peak splittings in the reflectivity spectra of the materials and emission from collective polariton states. We additionally show exciton-polaritons are the primary photoexcitation in these organic materials by directly imaging their ultrafast (5 × 106m s−1), ultralong (~270 nm) transport.
Original language | English |
---|---|
Article number | 6519 |
Journal | Nature Communications |
Volume | 12 |
Issue number | 1 |
DOIs | |
State | Published - Dec 2021 |
Bibliographical note
Publisher Copyright:© 2021, The Author(s).