TY - JOUR
T1 - Metal-organic frameworks as a versatile platform for radionuclide management
AU - Jin, Kangwoo
AU - Lee, Byeongchan
AU - Park, Jinhee
N1 - Publisher Copyright:
© 2020 Elsevier B.V.
PY - 2021/1/15
Y1 - 2021/1/15
N2 - Fuel fission products and fuel production byproducts contain radioactive nuclides such as 129/131I, 127Xe, 85Kr, 235U, 137Cs, 90Sr, 99Tc, and 79Se that exist in gaseous, ionic, and other forms. Therefore, understanding the fundamental nature of each species is crucial for designing corresponding binding sites that offer high sorption capacity and selectivity over their competing species in nuclear waste. This review describes the use of (i) metal-organic frameworks (MOFs) as sorbents for radioactive species and (ii) actinide-based MOFs (An-MOFs) as crystalline alternatives for studying the fundamental properties of radioactive nuclides. To the former end, three different forms of radioactive species are discussed, namely, (1) gas-phase 129/131I2, organic iodides, and 127Xe/85Kr; (2) cationic 235/238UO22+, 232Th4+, 137Cs+, and 90Sr2+; and (3) anionic 99TcO4− (ReO4−), 79SeO32−, and 79SeO42−. Certain MOFs can undergo single-crystal-to-single-crystal transformations during radionuclide capture, which facilitates the investigation of the binding modes and mechanisms of radioactive species by single-crystal X-ray diffractometry. Moreover, the customizable pore size and properties of MOFs endow them with exceptional sorption capacities and selectivities that have not been achieved in traditional sorbents. The acquired knowledge is beneficial for designing binding sites and optimizing the sorption performance of sorbent materials. Given that actinides have not been extensively studied because of their scarcity, An-MOFs provide a robust platform for investigating the chemical nature of these elements, which is critical for the effective management of the nuclear fuel cycle and nuclear waste.
AB - Fuel fission products and fuel production byproducts contain radioactive nuclides such as 129/131I, 127Xe, 85Kr, 235U, 137Cs, 90Sr, 99Tc, and 79Se that exist in gaseous, ionic, and other forms. Therefore, understanding the fundamental nature of each species is crucial for designing corresponding binding sites that offer high sorption capacity and selectivity over their competing species in nuclear waste. This review describes the use of (i) metal-organic frameworks (MOFs) as sorbents for radioactive species and (ii) actinide-based MOFs (An-MOFs) as crystalline alternatives for studying the fundamental properties of radioactive nuclides. To the former end, three different forms of radioactive species are discussed, namely, (1) gas-phase 129/131I2, organic iodides, and 127Xe/85Kr; (2) cationic 235/238UO22+, 232Th4+, 137Cs+, and 90Sr2+; and (3) anionic 99TcO4− (ReO4−), 79SeO32−, and 79SeO42−. Certain MOFs can undergo single-crystal-to-single-crystal transformations during radionuclide capture, which facilitates the investigation of the binding modes and mechanisms of radioactive species by single-crystal X-ray diffractometry. Moreover, the customizable pore size and properties of MOFs endow them with exceptional sorption capacities and selectivities that have not been achieved in traditional sorbents. The acquired knowledge is beneficial for designing binding sites and optimizing the sorption performance of sorbent materials. Given that actinides have not been extensively studied because of their scarcity, An-MOFs provide a robust platform for investigating the chemical nature of these elements, which is critical for the effective management of the nuclear fuel cycle and nuclear waste.
KW - Metal-organic framework
KW - Radionuclide management
KW - Radionuclide sequestration
KW - actinide-MOFs
UR - http://www.scopus.com/inward/record.url?scp=85090897582&partnerID=8YFLogxK
U2 - 10.1016/j.ccr.2020.213473
DO - 10.1016/j.ccr.2020.213473
M3 - Review article
AN - SCOPUS:85090897582
SN - 0010-8545
VL - 427
JO - Coordination Chemistry Reviews
JF - Coordination Chemistry Reviews
M1 - 213473
ER -