Abstract
With the emergence of Internet of Things, massive data created in the world pose huge technical challenges for efficient processing. Processing in-memory (PIM) technology has been widely investigated to overcome expensive data movements between processors and memory bloclcs. However, existing PIM designs incur large area overhead to enable computing capability via additional near-data processing cores and analog/mixed signal circuits. In this paper, we propose a new massively-parallel processing in-memory (PIM) architecture, called CHOIR, based on emerging nonvolatile memory technology for big data classification. Unlike existii PIM designs which demand large analog/mixed signal circuits, we support the parallel PIM instructions for conditional and arithmetic operations in an area-efficient way. As a result, the classification solution performs both training and testing on the PIM architecture by fully utilizing the massive parallelism. Our design significantly improves the performance and energy áfidency of the classification tasks by 123 x and 52 x respectively as compared to the state-of-the-art tree boosting library running on GPU.
Original language | English |
---|---|
Title of host publication | 2021 40th IEEE/ACM International Conference on Computer-Aided Design, ICCAD 2021 - Proceedings |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
ISBN (Electronic) | 9781665445078 |
DOIs | |
State | Published - 2021 |
Event | 40th IEEE/ACM International Conference on Computer-Aided Design, ICCAD 2021 - Munich, Germany Duration: 1 Nov 2021 → 4 Nov 2021 |
Publication series
Name | IEEE/ACM International Conference on Computer-Aided Design, Digest of Technical Papers, ICCAD |
---|---|
Volume | 2021-November |
ISSN (Print) | 1092-3152 |
Conference
Conference | 40th IEEE/ACM International Conference on Computer-Aided Design, ICCAD 2021 |
---|---|
Country/Territory | Germany |
City | Munich |
Period | 1/11/21 → 4/11/21 |
Bibliographical note
Publisher Copyright:©2021 IEEE