Massively Parallel Big Data Classification on a Programmable Processing In-Memory Architecture

Yeseong Kim, Mohsen Imani, Saransh Gupta, Minxuan Zhou, Tajana S. Rosing

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

With the emergence of Internet of Things, massive data created in the world pose huge technical challenges for efficient processing. Processing in-memory (PIM) technology has been widely investigated to overcome expensive data movements between processors and memory bloclcs. However, existing PIM designs incur large area overhead to enable computing capability via additional near-data processing cores and analog/mixed signal circuits. In this paper, we propose a new massively-parallel processing in-memory (PIM) architecture, called CHOIR, based on emerging nonvolatile memory technology for big data classification. Unlike existii PIM designs which demand large analog/mixed signal circuits, we support the parallel PIM instructions for conditional and arithmetic operations in an area-efficient way. As a result, the classification solution performs both training and testing on the PIM architecture by fully utilizing the massive parallelism. Our design significantly improves the performance and energy áfidency of the classification tasks by 123 x and 52 x respectively as compared to the state-of-the-art tree boosting library running on GPU.

Original languageEnglish
Title of host publication2021 40th IEEE/ACM International Conference on Computer-Aided Design, ICCAD 2021 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781665445078
DOIs
StatePublished - 2021
Event40th IEEE/ACM International Conference on Computer-Aided Design, ICCAD 2021 - Munich, Germany
Duration: 1 Nov 20214 Nov 2021

Publication series

NameIEEE/ACM International Conference on Computer-Aided Design, Digest of Technical Papers, ICCAD
Volume2021-November
ISSN (Print)1092-3152

Conference

Conference40th IEEE/ACM International Conference on Computer-Aided Design, ICCAD 2021
Country/TerritoryGermany
CityMunich
Period1/11/214/11/21

Bibliographical note

Publisher Copyright:
©2021 IEEE

Fingerprint

Dive into the research topics of 'Massively Parallel Big Data Classification on a Programmable Processing In-Memory Architecture'. Together they form a unique fingerprint.

Cite this