Mapping the emergence of molecular vibrations mediating bond formation

Jong Goo Kim, Shunsuke Nozawa, Hanui Kim, Eun Hyuk Choi, Tokushi Sato, Tae Wu Kim, Kyung Hwan Kim, Hosung Ki, Jungmin Kim, Minseo Choi, Yunbeom Lee, Jun Heo, Key Young Oang, Kouhei Ichiyanagi, Ryo Fukaya, Jae Hyuk Lee, Jaeku Park, Intae Eom, Sae Hwan Chun, Sunam KimMinseok Kim, Tetsuo Katayama, Tadashi Togashi, Sigeki Owada, Makina Yabashi, Sang Jin Lee, Seonggon Lee, Chi Woo Ahn, Doo Sik Ahn, Jiwon Moon, Seungjoo Choi, Joonghan Kim, Taiha Joo, Jeongho Kim, Shin ichi Adachi, Hyotcherl Ihee

Research output: Contribution to journalArticlepeer-review

68 Scopus citations

Abstract

Fundamental studies of chemical reactions often consider the molecular dynamics along a reaction coordinate using a calculated or suggested potential energy surface1–5. But fully mapping such dynamics experimentally, by following all nuclear motions in a time-resolved manner—that is, the motions of wavepackets—is challenging and has not yet been realized even for the simple stereotypical bimolecular reaction6–8: A–B + C → A + B–C. Here we track the trajectories of these vibrational wavepackets during photoinduced bond formation of the gold trimer complex [Au(CN)2]3 in an aqueous monomer solution, using femtosecond X-ray liquidography9–12 with X-ray free-electron lasers13,14. In the complex, which forms when three monomers A, B and C cluster together through non-covalent interactions15,16, the distance between A and B is shorter than that between B and C. Tracking the wavepacket in three-dimensional nuclear coordinates reveals that within the first 60 femtoseconds after photoexcitation, a covalent bond forms between A and B to give A–B + C. The second covalent bond, between B and C, subsequently forms within 360 femtoseconds to give a linear and covalently bonded trimer complex A–B–C. The trimer exhibits harmonic vibrations that we map and unambiguously assign to specific normal modes using only the experimental data. In principle, more intense X-rays could visualize the motion not only of highly scattering atoms such as gold but also of lighter atoms such as carbon and nitrogen, which will open the door to the direct tracking of the atomic motions involved in many chemical reactions.

Original languageEnglish
Pages (from-to)520-524
Number of pages5
JournalNature
Volume582
Issue number7813
DOIs
StatePublished - 25 Jun 2020

Bibliographical note

Publisher Copyright:
© 2020, The Author(s), under exclusive licence to Springer Nature Limited.

Fingerprint

Dive into the research topics of 'Mapping the emergence of molecular vibrations mediating bond formation'. Together they form a unique fingerprint.

Cite this