TY - JOUR
T1 - Laser-induced digital oxidation for copper-based flexible photodetectors
AU - Kwon, Hyeokjin
AU - Kim, Junil
AU - Ko, Kyungmin
AU - Matthews, Manyalibo J.
AU - Suh, Joonki
AU - Kwon, Hyuk Jun
AU - Yoo, Jae Hyuck
N1 - Publisher Copyright:
© 2020
PY - 2021/2/28
Y1 - 2021/2/28
N2 - Copper oxide compounds (CuxO) with bandgaps of 1.3–2.1 eV (CuO) and 2.1–2.6 eV (Cu2O) have been investigated as promising p-type semiconducting materials. CuxO is generally obtained by deposition or thermal oxidation, but those methods are not optimal for flexible substrates. Furthermore, additional patterning steps are required to fabricate devices. We present an easy, controllable method to fabricate a metal-semiconductor-metal (MSM) photodetector using laser-induced oxidation of a thin Cu film. After laser irradiation, the Cu film is heated under ambient conditions, and this leads to a thermal oxidation reaction, in which Cu oxide is monolithically formed in the Cu film and a Cu-CuxO-Cu MSM structure is produced. Since the laser offers localized heating, an arbitrary CuxO pattern can be written in the Cu film by spatially controlled heating. In addition, by optimizing the heating time, the laser-induced oxidation can be successfully performed even on a flexible substrate. To study the laser-induced oxidation, we examined the correlation between laser parameters and the oxidation pattern and analyzed the composition using scanning electron microscopy, Raman spectroscopy, and X-ray photoemission spectroscopy. Furthermore, we measured the transient photoresponse and employed scanning photocurrent microscopy to investigate the mechanism of carrier transport behavior.
AB - Copper oxide compounds (CuxO) with bandgaps of 1.3–2.1 eV (CuO) and 2.1–2.6 eV (Cu2O) have been investigated as promising p-type semiconducting materials. CuxO is generally obtained by deposition or thermal oxidation, but those methods are not optimal for flexible substrates. Furthermore, additional patterning steps are required to fabricate devices. We present an easy, controllable method to fabricate a metal-semiconductor-metal (MSM) photodetector using laser-induced oxidation of a thin Cu film. After laser irradiation, the Cu film is heated under ambient conditions, and this leads to a thermal oxidation reaction, in which Cu oxide is monolithically formed in the Cu film and a Cu-CuxO-Cu MSM structure is produced. Since the laser offers localized heating, an arbitrary CuxO pattern can be written in the Cu film by spatially controlled heating. In addition, by optimizing the heating time, the laser-induced oxidation can be successfully performed even on a flexible substrate. To study the laser-induced oxidation, we examined the correlation between laser parameters and the oxidation pattern and analyzed the composition using scanning electron microscopy, Raman spectroscopy, and X-ray photoemission spectroscopy. Furthermore, we measured the transient photoresponse and employed scanning photocurrent microscopy to investigate the mechanism of carrier transport behavior.
KW - Copper
KW - Flexible electronics
KW - Laser
KW - Oxidation
KW - Photodetectors
UR - http://www.scopus.com/inward/record.url?scp=85096197504&partnerID=8YFLogxK
U2 - 10.1016/j.apsusc.2020.148333
DO - 10.1016/j.apsusc.2020.148333
M3 - Article
AN - SCOPUS:85096197504
SN - 0169-4332
VL - 540
JO - Applied Surface Science
JF - Applied Surface Science
M1 - 148333
ER -