Kondo interaction in FeTe and its potential role in the magnetic order

Younsik Kim, Min Seok Kim, Dongwook Kim, Minjae Kim, Minsoo Kim, Cheng Maw Cheng, Joonyoung Choi, Saegyeol Jung, Donghui Lu, Jong Hyuk Kim, Soohyun Cho, Dongjoon Song, Dongjin Oh, Li Yu, Young Jai Choi, Hyeong Do Kim, Jung Hoon Han, Younjung Jo, Ji Hoon Shim, Jungpil SeoSoonsang Huh, Changyoung Kim

Research output: Contribution to journalArticlepeer-review

9 Scopus citations

Abstract

Finding d-electron heavy fermion states has been an important topic as the diversity in d-electron materials can lead to many exotic Kondo effect-related phenomena or new states of matter such as correlation-driven topological Kondo insulator. Yet, obtaining direct spectroscopic evidence for a d-electron heavy fermion system has been elusive to date. Here, we report the observation of Kondo lattice behavior in an antiferromagnetic metal, FeTe, via angle-resolved photoemission spectroscopy, scanning tunneling spectroscopy and transport property measurements. The Kondo lattice behavior is represented by the emergence of a sharp quasiparticle and Fano-type tunneling spectra at low temperatures. The transport property measurements confirm the low-temperature Fermi liquid behavior and reveal successive coherent-incoherent crossover upon increasing temperature. We interpret the Kondo lattice behavior as a result of hybridization between localized Fe 3dxy and itinerant Te 5pz orbitals. Our observations strongly suggest unusual cooperation between Kondo lattice behavior and long-range magnetic order.

Original languageEnglish
Article number4145
JournalNature Communications
Volume14
Issue number1
DOIs
StatePublished - Dec 2023

Bibliographical note

Publisher Copyright:
© 2023, The Author(s).

Fingerprint

Dive into the research topics of 'Kondo interaction in FeTe and its potential role in the magnetic order'. Together they form a unique fingerprint.

Cite this