Hydrodynamic role of longitudinal dorsal ridges in a leatherback turtle swimming

Kyeongtae Bang, Jooha Kim, Sang Im Lee, Haecheon Choi

Research output: Contribution to journalArticlepeer-review

19 Scopus citations

Abstract

Leatherback sea turtles (Dermochelys coriacea) are known to have a superior diving ability and be highly adapted to pelagic swimming. They have five longitudinal ridges on their carapace. Although it was conjectured that these ridges might be an adaptation for flow control, no rigorous study has been performed to understand their hydrodynamic roles. Here we show that these ridges are slightly misaligned to the streamlines around the body to generate streamwise vortices, and suppress or delay flow separation on the carapace, resulting in enhanced hydrodynamic performances during different modes of swimming. Our results suggest that shapes of some morphological features of living creatures, like the longitudinal ridges of the leatherback turtles, need not be streamlined for excellent hydro-or aerodynamic performances, contrary to our common physical intuition.

Original languageEnglish
Article number34283
JournalScientific Reports
Volume6
DOIs
StatePublished - 3 Oct 2016

Bibliographical note

Publisher Copyright:
© 2016 The Author(s).

Fingerprint

Dive into the research topics of 'Hydrodynamic role of longitudinal dorsal ridges in a leatherback turtle swimming'. Together they form a unique fingerprint.

Cite this