Abstract
Poly(vinylidenefluoride-co-trifluoroethylene) (P(VDF-TrFE)), as a ferroelectric polymer, offers great promise for energy harvesting for flexible and wearable applications. Here, this paper shows that the choice of solvent used to dissolve the polymer significantly influences its properties in terms of energy harvesting. Indeed, the P(VDF-TrFE) prepared using a high dipole moment solvent has higher piezoelectric and pyroelectric coefficients and triboelectric property. Such improvements are the result of higher crystallinity and better dipole alignment of the polymer prepared using a higher dipole moment solvent. Finite element method simulations confirm that the higher dipole moment results in higher piezoelectric, pyroelectric, and triboelectric potential distributions. Furthermore, P(VDF-TrFE)-based piezoelectric, pyroelectric, and triboelectric nanogenerators (NGs) experimentally validate that the higher dipole moment solvent significantly enhances the power output performance of the NGs; the improvement is about 24% and 82% in output voltage and current, respectively, for piezoelectric NG; about 40% and 35% in output voltage and current, respectively, for pyroelectric NG; and about 65% and 75% in output voltage and current for triboelectric NG. In brief, the approach of using a high dipole moment solvent is very promising for high output P(VDF-TrFE)-based wearable NGs.
Original language | English |
---|---|
Article number | 1700702 |
Journal | Advanced Functional Materials |
Volume | 27 |
Issue number | 22 |
DOIs | |
State | Published - 13 Jun 2017 |
Bibliographical note
Publisher Copyright:© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Keywords
- P(VDF-TrFE)
- dipole alignment
- nanogenerators
- piezoelectric
- pyroelectric
- triboelectric