TY - JOUR
T1 - Hierarchical oxygen rich-carbon nanorods
T2 - Efficient and durable electrode for all-vanadium redox flow batteries
AU - Aziz, Md Abdul
AU - Hossain, Syed Imdadul
AU - Shanmugam, Sangaraju
N1 - Publisher Copyright:
© 2019 Elsevier B.V.
PY - 2020/1/1
Y1 - 2020/1/1
N2 - We describe the fabrication of hierarchical oxygen and nitrogen enriched-carbon electrode materials from zein and polyacrylonitrile by a simple electrospinning technique for durable and high rate all-vanadium redox flow batteries (VRBs). The nitrogen-doped carbon nanorods (NCNR) provide abundant oxygen-rich and nitrogen active sites, and thereby, enhancing the catalytic activity toward both VO2+/VO2+ and V2+/V3+ ion redox reactions by improving ion transfer kinetics and faster electron transfer rate in VRB. With improving electrocatalytic properties, the NCNR decorating carbon felt electrode (NCNR/CF) exhibits excellent battery performance with an impressive specific capacity of 37.3 Ah L−1 than pristine CF (22.8 Ah L−1) and CNR/CF (28.6 Ah L−1) electrodes. The NCNR/CF electrode also shows an outstanding coulombic efficiency (CE, 98.9%) and energy efficiency (EE, 84.3%) compared with the pristine CF (CE, 91.2% and EE, 73.4%) and the CNR/CF (CE, 95.6% and EE, 81.2%) electrodes in the VRB at 40 mA cm−2 current density. Furthermore, the NCNR/CF electrode exhibits 10.9 and 3.1% higher EE as compared to the pristine CF and CNR/CF electrodes, respectively. Therefore, the impressive cyclic rate capability with negligible capacity decay proves the superiority of NCNR as a potential electrode material for all-vanadium redox flow batteries.
AB - We describe the fabrication of hierarchical oxygen and nitrogen enriched-carbon electrode materials from zein and polyacrylonitrile by a simple electrospinning technique for durable and high rate all-vanadium redox flow batteries (VRBs). The nitrogen-doped carbon nanorods (NCNR) provide abundant oxygen-rich and nitrogen active sites, and thereby, enhancing the catalytic activity toward both VO2+/VO2+ and V2+/V3+ ion redox reactions by improving ion transfer kinetics and faster electron transfer rate in VRB. With improving electrocatalytic properties, the NCNR decorating carbon felt electrode (NCNR/CF) exhibits excellent battery performance with an impressive specific capacity of 37.3 Ah L−1 than pristine CF (22.8 Ah L−1) and CNR/CF (28.6 Ah L−1) electrodes. The NCNR/CF electrode also shows an outstanding coulombic efficiency (CE, 98.9%) and energy efficiency (EE, 84.3%) compared with the pristine CF (CE, 91.2% and EE, 73.4%) and the CNR/CF (CE, 95.6% and EE, 81.2%) electrodes in the VRB at 40 mA cm−2 current density. Furthermore, the NCNR/CF electrode exhibits 10.9 and 3.1% higher EE as compared to the pristine CF and CNR/CF electrodes, respectively. Therefore, the impressive cyclic rate capability with negligible capacity decay proves the superiority of NCNR as a potential electrode material for all-vanadium redox flow batteries.
KW - Carbon felt electrode
KW - Electrochemical activity
KW - NCNR
KW - Vanadium redox flow battery
UR - http://www.scopus.com/inward/record.url?scp=85073678902&partnerID=8YFLogxK
U2 - 10.1016/j.jpowsour.2019.227329
DO - 10.1016/j.jpowsour.2019.227329
M3 - Article
AN - SCOPUS:85073678902
SN - 0378-7753
VL - 445
JO - Journal of Power Sources
JF - Journal of Power Sources
M1 - 227329
ER -