TY - JOUR
T1 - Heterostructured Titanium Oxynitride-Manganese Cobalt Oxide Nanorods as High-Performance Electrode Materials for Supercapacitor Devices
AU - Samdani, Jitendra Shashikant
AU - Kang, Tong Hyun
AU - Lee, Byong June
AU - Jang, Yun Hee
AU - Yu, Jong Sung
AU - Shanmugam, Sangaraju
N1 - Publisher Copyright:
©
PY - 2020/12/9
Y1 - 2020/12/9
N2 - Metal oxynitrides have been considered recently as emerging electrode materials for supercapacitors. Herein, we converted titanate nanotubes into a series of titanium oxynitride (TiON) nanorods at nitridation temperatures of 800, 900, and 1000 °C in ammonia gas and tested them as supercapacitor electrodes. TiON-800, TiON-900, and TiON-1000 showed capacities of 60, 140, and 71 F g-1, respectively, at a current density of 1 A g-1. However, because of TiON's low capacity, a heterostructure (TiON-900/MnCo2O4) was designed based on the optimized TiON with MnCo2O4 (MCO). The heterostructure TiON-900-MCO and MCO electrode materials showed specific capacities of 515 and 381 F g-1, respectively, at a current density of 1 A g-1. The cycling stability retention of TiON-900 and MCO were 75 and 68%, respectively; moreover, the heterostructure of TiON-900-MCO reached 78% at a current density of 5 A g-1 over 5000 cycles. The increased capacity and sustained cycling stability retention are attributable to the synergistic effect of TiON-900 and MCO. A coin cell (CC)-type symmetric supercapacitor prototype of TiON-900-MCO was fabricated and tested in the voltage range of 0.0-2.0 V in 1 M LiClO4 in propylene carbonate/dimethyl carbonate electrolyte, and a 79% cycling retention capacity of TiON-900-MCO-CC was achieved over 10 000 cycles at a current density of 250 mA g-1. We demonstrated a prototypical single cell of TiON-900-MCO-CC as a sustained energy output by powering a red-light emitting diode that indicated TiON-900-MCo electrode materials' potential application in commercial supercapacitor devices.
AB - Metal oxynitrides have been considered recently as emerging electrode materials for supercapacitors. Herein, we converted titanate nanotubes into a series of titanium oxynitride (TiON) nanorods at nitridation temperatures of 800, 900, and 1000 °C in ammonia gas and tested them as supercapacitor electrodes. TiON-800, TiON-900, and TiON-1000 showed capacities of 60, 140, and 71 F g-1, respectively, at a current density of 1 A g-1. However, because of TiON's low capacity, a heterostructure (TiON-900/MnCo2O4) was designed based on the optimized TiON with MnCo2O4 (MCO). The heterostructure TiON-900-MCO and MCO electrode materials showed specific capacities of 515 and 381 F g-1, respectively, at a current density of 1 A g-1. The cycling stability retention of TiON-900 and MCO were 75 and 68%, respectively; moreover, the heterostructure of TiON-900-MCO reached 78% at a current density of 5 A g-1 over 5000 cycles. The increased capacity and sustained cycling stability retention are attributable to the synergistic effect of TiON-900 and MCO. A coin cell (CC)-type symmetric supercapacitor prototype of TiON-900-MCO was fabricated and tested in the voltage range of 0.0-2.0 V in 1 M LiClO4 in propylene carbonate/dimethyl carbonate electrolyte, and a 79% cycling retention capacity of TiON-900-MCO-CC was achieved over 10 000 cycles at a current density of 250 mA g-1. We demonstrated a prototypical single cell of TiON-900-MCO-CC as a sustained energy output by powering a red-light emitting diode that indicated TiON-900-MCo electrode materials' potential application in commercial supercapacitor devices.
KW - TiON-MnCoO
KW - coin cell supercapacitor
KW - heterostructure
KW - organic electrolyte
KW - symmetric supercapacitor
KW - titanium oxynitride
UR - http://www.scopus.com/inward/record.url?scp=85097843025&partnerID=8YFLogxK
U2 - 10.1021/acsami.0c13803
DO - 10.1021/acsami.0c13803
M3 - Article
C2 - 33236633
AN - SCOPUS:85097843025
SN - 1944-8244
VL - 12
SP - 54524
EP - 54536
JO - ACS Applied Materials and Interfaces
JF - ACS Applied Materials and Interfaces
IS - 49
ER -