Abstract
The formation of stabilized radical anions on organic materials in the solid state is an important issue in radical-based fundamental research and various applications. Herein, for the first time, we report on gas-induced ion-free stable radical anion formation (SRAF) of organic semiconducting solids with high gas selectivities through the use of organic field-effect transistor (OFET) gas sensors and electron spin resonance spectroscopy. In contrast to the previously reported SRAF, which requires either anionic analytes in solution and/or cationic substituents on P-electron-deficient aromatic cores, NDI-EWGs consist of an n-type semiconducting naphthalene diimide (NDI) and various electron-withdrawing groups (EWGs) that exhibit non-ion-involved, gas-selective SRAF in the solid state. In the presence of hard Lewis base gases, NDI-EWG-based OFETs exhibit enhanced conductivity (Current-ON mode) through the formation of an SRAF NDI/gas complex, while in the presence of borderline and soft Lewis base gases, NDI-EWG-based OFETs show decreased conductivity (Current-OFF mode) by the formation of a resistive NDI/gas complex. Organic semiconducting solids with EWGs exhibiting highly gas-selective solid-SRAF constitute a very promising platform for radical-based chemistry and can be used in various applications, such as highly gas-selective probes.
Original language | English |
---|---|
Pages (from-to) | 35904-35913 |
Number of pages | 10 |
Journal | ACS Applied Materials and Interfaces |
Volume | 11 |
Issue number | 39 |
DOIs | |
State | Published - 2 Oct 2019 |
Bibliographical note
Publisher Copyright:© 2019 American Chemical Society.
Keywords
- P-electron-deficient aromatic cores
- gas sensors
- naphthalene diimide
- organic field-effect transistor
- stable radical anion formation