Functional epsilon entropy

Sourya Basu, Daewon Seo, Lav Varshney

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

7 Scopus citations

Abstract

We consider the problem of coding for computing with maximal distortion, where the sender communicates with a receiver, which has its own private data and wants to compute a function of their combined data with some fidelity constraint known to both agents. We show that the minimum rate for this problem is equal to the conditional entropy of a hypergraph and design practical codes for the problem. Further, the minimum rate of this problem may be a discontinuous function of the fidelity constraint. We also consider the case when the exact function is not known to the sender, but some approximate function or a class to which the function belongs is known and provide efficient achievable schemes.

Original languageEnglish
Title of host publicationProceedings - DCC 2020
Subtitle of host publicationData Compression Conference
EditorsAli Bilgin, Michael W. Marcellin, Joan Serra-Sagrista, James A. Storer
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages332-341
Number of pages10
ISBN (Electronic)9781728164571
DOIs
StatePublished - Mar 2020
Event2020 Data Compression Conference, DCC 2020 - Snowbird, United States
Duration: 24 Mar 202027 Mar 2020

Publication series

NameData Compression Conference Proceedings
Volume2020-March
ISSN (Print)1068-0314

Conference

Conference2020 Data Compression Conference, DCC 2020
Country/TerritoryUnited States
CitySnowbird
Period24/03/2027/03/20

Bibliographical note

Publisher Copyright:
© 2020 IEEE.

Fingerprint

Dive into the research topics of 'Functional epsilon entropy'. Together they form a unique fingerprint.

Cite this