Even denominator fractional quantum Hall states in higher Landau levels of graphene

Youngwook Kim, Ajit C. Balram, Takashi Taniguchi, Kenji Watanabe, Jainendra K. Jain, Jurgen H. Smet

Research output: Contribution to journalLetterpeer-review

90 Scopus citations

Abstract

An important development in the field of the fractional quantum Hall effect was the proposal that the 5/2 state observed in the Landau level with orbital index n = 1 of two-dimensional electrons in a GaAs quantum well 1 originates from a chiral p-wave paired state of composite fermions that are topological bound states of electrons and quantized vortices. The excitations of this state, which is theoretically described by a ‘Pfaffian’ wavefunction 2 or its hole partner called the anti-Pfaffian 3,4 , are neither fermions nor bosons but Majorana quasiparticles obeying non-Abelian braid statistics 5 . This has inspired ideas for fault-tolerant topological quantum computation 6 and has also instigated a search for other states with exotic quasiparticles. Here we report experiments on monolayer graphene that show clear evidence for unexpected even denominator fractional quantum Hall physics in the n = 3 Landau level. We numerically investigate the known candidate states for the even denominator fractional quantum Hall effect, including the Pfaffian, the particle–hole symmetric Pfaffian and the 221-parton states, and conclude that, among these, the 221-parton appears a potentially suitable candidate to describe the experimentally observed state. Like the Pfaffian, this state is believed to harbour quasi-particles with non-Abelian braid statistics 7 .

Original languageEnglish
Pages (from-to)154-158
Number of pages5
JournalNature Physics
Volume15
Issue number2
DOIs
StatePublished - 1 Feb 2019

Bibliographical note

Publisher Copyright:
© 2018, The Author(s), under exclusive licence to Springer Nature Limited.

Fingerprint

Dive into the research topics of 'Even denominator fractional quantum Hall states in higher Landau levels of graphene'. Together they form a unique fingerprint.

Cite this