Energy and Delay Guaranteed Joint Beam and User Scheduling Policy in 5G CoMP Networks

Yeongjin Kim, Jaehwan Jeong, Suyoung Ahn, Jeongho Kwak, Song Chong

Research output: Contribution to journalArticlepeer-review

12 Scopus citations

Abstract

Massive Multi-Input Multi-Output (MIMO) and Coordinated MultiPoint (CoMP) technologies in Cloud-RAN (C-RAN) architecture become inevitable trend due to the advent of next-generation mobile applications, which are traffic-intensive, such as ultra high definition (UHD) video. In this paper, we study a joint beam activation and user scheduling problem in a 5G cellular network with massive MIMO and CoMP utilizing orthogonal random beamforming technique. This paper aims to minimize total Remote Radio Heads' (RRHs') energy expenditure in a dynamic C-RAN architecture while ensuring finite service time for all user traffic arrivals in the communication coverage. We leverage Lyapunov drift-plus-penalty framework to transform an original long-term average problem into a series of per-slot modified problems. Since the provided per-slot problem is combinatorial and nonlinear optimization problem, we are inspired by a greedy algorithm to design energy and delay guaranteed joint beam activation and user scheduling policy, namely BEANS. We prove that the proposed BEANS ensures finite upper bounds of average RRH energy consumption and average queue backlogs for all traffic arrival rates within constant ratio of capacity region and all energy-delay tradeoff parameters. These proofs are the first attempt to theoretically demonstrate guarantees of energy and queue bounds in a framework consisting of possibly negative submodular objective function and non-matriod constraints. Finally, via extensive simulations, we compare the capacity region and energy-queue backlog tradeoff of BEANS with optimal and existing algorithms, and show that BEANS attains up to 65% of energy saving for the same average queue backlog compared to the algorithms which do not take traffic dynamics and energy consumption into considerations.

Original languageEnglish
Pages (from-to)2742-2756
Number of pages15
JournalIEEE Transactions on Wireless Communications
Volume21
Issue number4
DOIs
StatePublished - 1 Apr 2022

Bibliographical note

Publisher Copyright:
© 2002-2012 IEEE.

Keywords

  • 5G networks
  • Beamforming
  • CoMP
  • energy-delay tradeoff
  • massive MIMO
  • user scheduling

Fingerprint

Dive into the research topics of 'Energy and Delay Guaranteed Joint Beam and User Scheduling Policy in 5G CoMP Networks'. Together they form a unique fingerprint.

Cite this