Abstract
We investigated the in?uence of nickel oxide (NiO) nanoparticles that are incorporated into the hole-collecting buffer layer [poly(3,4- ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)] on the performance of polymer:fullerene solar cells. To understand the optimum composition of NiO nanoparticles, the composition of NiO nanoparticles was varied from 0 wt% to 23 wt%. Results showed that the optical transmittance was gradually decreased as the NiO content increased. However, the device performance (short circuit current density, ?ll factor, series resistance, power conversion ef?ciency) exhibited a two stage trend in a boundary of ∼9 wt% NiO content. This trend was in good agreement with the trend of sheet resistance in the presence of slight discrepancy owing to the different charge transport geometry.
Original language | English |
---|---|
Pages (from-to) | 5696-5699 |
Number of pages | 4 |
Journal | Journal of Nanoscience and Nanotechnology |
Volume | 12 |
Issue number | 7 |
DOIs | |
State | Published - Jul 2012 |
Keywords
- Hole-Collecting Buffer Layer
- NiO Nanoparticles
- Polymer Solar Cells