Abstract
The conduction/set processes of resistive switching have been systemically investigated for Cu/a-Si/Si electrochemical memristive devices. Experimental results indicate that the set process was driven by two different mechanisms, depending on the programming pulse amplitude: a purely electrical dielectric breakdown and a thermally assisted dielectric breakdown. For the latter process, we observe that the set time decreased exponentially with the increase in the programming pulse amplitude, whereas the former process shows amplitude independence. Through the temperature-dependent set transition characteristics, we argue that the filament growth in set process could be dominated by cation transport in the dielectric film. The thermal activation energy of Cu hopping in a-Si is extracted to be 0.16 eV.
Original language | English |
---|---|
Article number | 043503 |
Journal | Applied Physics Letters |
Volume | 103 |
Issue number | 4 |
DOIs | |
State | Published - 22 Jul 2013 |