Dual Adaptive Data Augmentation for 3D Object Detection

Joohyun Lee, Jin Hee Lee, Jae Keun Lee, Je Seok Kim, Soon Kwon, Sangdong Kim

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

This paper proposes Dual Adaptive Data Augmentation (DADA) method for 3D object detection. Training deep learning models requires large amounts of data, which is time-consuming and expensive. To address this challenge, data augmentation methods have been proposed to generate augmented objects. However, conventional methods rely on fixed parameters and ignore scene and object characteristics. To address these limitations, we propose DADA, which consists of two modules: Scene-based ADA and Density-based ADA. Scene-based ADA adjusts augmented objects based on the distribution of Ground Truth (GT) objects in each scene, allowing augmentation to focus on sparse scenes with fewer GT objects while keeping overall data volume. Density-based ADA utilizes LiDAR characteristics to apply different sampling methods, generating diverse augmented objects based on object density. Experiment results show considerable improvement in performance on the KITTI and ONCE datasets.

Original languageEnglish
Title of host publicationICTC 2023 - 14th International Conference on Information and Communication Technology Convergence
Subtitle of host publicationExploring the Frontiers of ICT Innovation
PublisherIEEE Computer Society
Pages1732-1737
Number of pages6
ISBN (Electronic)9798350313277
DOIs
StatePublished - 2023
Event14th International Conference on Information and Communication Technology Convergence, ICTC 2023 - Jeju Island, Korea, Republic of
Duration: 11 Oct 202313 Oct 2023

Publication series

NameInternational Conference on ICT Convergence
ISSN (Print)2162-1233
ISSN (Electronic)2162-1241

Conference

Conference14th International Conference on Information and Communication Technology Convergence, ICTC 2023
Country/TerritoryKorea, Republic of
CityJeju Island
Period11/10/2313/10/23

Bibliographical note

Publisher Copyright:
© 2023 IEEE.

Keywords

  • 3D Object Detection
  • Data Augmentation
  • Li-DAR

Fingerprint

Dive into the research topics of 'Dual Adaptive Data Augmentation for 3D Object Detection'. Together they form a unique fingerprint.

Cite this