TY - JOUR
T1 - Crystal Alignment Technology of Electrode Material for Enhancing Electrochemical Performance in Lithium Ion Battery
AU - Kim, Cham
AU - Yang, Yeokyung
AU - Lopez, David Humberto
N1 - Publisher Copyright:
© 2021 The Electrochemical Society ("ECS"). Published on behalf of ECS by IOP Publishing Limited.
PY - 2021/4/1
Y1 - 2021/4/1
N2 - The crystal alignment technology of lithium nickel manganese oxide (LiNi0.5Mn0.3Co0.2O2) is proposed using its magnetic properties. The crystalline LiNi0.5Mn0.3Co0.2O2 exhibits the paramagnetic behavior at room temperature as well as the magnetic anisotropy originated from its crystallographic anisotropy. If the crystalline LiNi0.5Mn0.3Co0.2O2 is exposed to a magnetic field, it can tend to rotate to an angle minimizing its system energy due to spontaneous magnetization. Taking these magnetic natures into account, the vector quantity of an external magnetic field (i.e., magnetic flux density and field direction) is adjusted to apply to a viscous LiNi0.5Mn0.3Co0.2O2 slurry coated onto a current collector; thus, the crystal aligned LiNi0.5Mn0.3Co0.2O2 electrode is obtained, in which the (00 l) plane is notably oriented perpendicular to the surface of a current collector. The aligned LiNi0.5Mn0.3Co0.2O2 electrode consistently records superior electrochemical performance to a pristine LiNi0.5Mn0.3Co0.2O2 electrode because the former demonstrates an improved capability of lithium ion transport during the charge/discharge process in a lithium ion battery. The aligned LiNi0.5Mn0.3Co0.2O2 is considered to have the improved transport capability because the kinetics of lithium ion transport in LiNixMnyCo1-(x+y)O2 intrinsically occurs along the (00 l) plane.
AB - The crystal alignment technology of lithium nickel manganese oxide (LiNi0.5Mn0.3Co0.2O2) is proposed using its magnetic properties. The crystalline LiNi0.5Mn0.3Co0.2O2 exhibits the paramagnetic behavior at room temperature as well as the magnetic anisotropy originated from its crystallographic anisotropy. If the crystalline LiNi0.5Mn0.3Co0.2O2 is exposed to a magnetic field, it can tend to rotate to an angle minimizing its system energy due to spontaneous magnetization. Taking these magnetic natures into account, the vector quantity of an external magnetic field (i.e., magnetic flux density and field direction) is adjusted to apply to a viscous LiNi0.5Mn0.3Co0.2O2 slurry coated onto a current collector; thus, the crystal aligned LiNi0.5Mn0.3Co0.2O2 electrode is obtained, in which the (00 l) plane is notably oriented perpendicular to the surface of a current collector. The aligned LiNi0.5Mn0.3Co0.2O2 electrode consistently records superior electrochemical performance to a pristine LiNi0.5Mn0.3Co0.2O2 electrode because the former demonstrates an improved capability of lithium ion transport during the charge/discharge process in a lithium ion battery. The aligned LiNi0.5Mn0.3Co0.2O2 is considered to have the improved transport capability because the kinetics of lithium ion transport in LiNixMnyCo1-(x+y)O2 intrinsically occurs along the (00 l) plane.
UR - http://www.scopus.com/inward/record.url?scp=85104283690&partnerID=8YFLogxK
U2 - 10.1149/1945-7111/abf17c
DO - 10.1149/1945-7111/abf17c
M3 - Article
AN - SCOPUS:85104283690
SN - 0013-4651
VL - 168
JO - Journal of the Electrochemical Society
JF - Journal of the Electrochemical Society
IS - 4
M1 - 040502
ER -