TY - JOUR
T1 - Cobalt sulfide nanoparticles grown on nitrogen and sulfur codoped graphene oxide
T2 - An efficient electrocatalyst for oxygen reduction and evolution reactions
AU - Ganesan, Pandian
AU - Prabu, Moni
AU - Sanetuntikul, Jakkid
AU - Shanmugam, Sangaraju
N1 - Publisher Copyright:
© 2015 American Chemical Society.
PY - 2015/6/5
Y1 - 2015/6/5
N2 - Electrochemical oxygen evolution and reduction reactions have received great attention due to their importance in several key technologies such as fuel cells, electrolyzers, and metal-air batteries. Here, we present a simple approach to the preparation of cobalt sulfide nanoparticles in situ grown on a nitrogen and sulfur codoped graphene oxide surface. The particle size and phase were controlled by changing the treatment temperature. Cobalt sulfide nanoparticles dispersed on graphene oxide hybrids were successfully prepared by a solid-state thermolysis approach at different temperatures (400, 500, and 600 °C) using cobalt thiourea and graphene oxide. X-ray diffraction studies revealed that hybrids prepared at 400 and 500 °C result in pure CoS2 phase, whereas the hybrid prepared at 600 °C exhibits Co9S8 phase. X-ray photoelectron spectroscopy studies revealed that nitrogen and sulfur simultaneously codoped on the graphene oxide surface, and these sites act to anchor the CoS2 nanoparticles strongly on the GO surface. The strong coupling between CoS2 and N,S-GO was reflected in the improvement of the oxygen electrode potential. CoS2(400)/N,S-GO showed an outstanding oxygen electrode activity with a potential of about 0.82 V against a reversible hydrogen electrode in alkaline medium, which is far better than the performance of precious catalysts such as Pt/C (1.16 V), Ru/C (1.01 V), and Ir/C (0.92 V).
AB - Electrochemical oxygen evolution and reduction reactions have received great attention due to their importance in several key technologies such as fuel cells, electrolyzers, and metal-air batteries. Here, we present a simple approach to the preparation of cobalt sulfide nanoparticles in situ grown on a nitrogen and sulfur codoped graphene oxide surface. The particle size and phase were controlled by changing the treatment temperature. Cobalt sulfide nanoparticles dispersed on graphene oxide hybrids were successfully prepared by a solid-state thermolysis approach at different temperatures (400, 500, and 600 °C) using cobalt thiourea and graphene oxide. X-ray diffraction studies revealed that hybrids prepared at 400 and 500 °C result in pure CoS2 phase, whereas the hybrid prepared at 600 °C exhibits Co9S8 phase. X-ray photoelectron spectroscopy studies revealed that nitrogen and sulfur simultaneously codoped on the graphene oxide surface, and these sites act to anchor the CoS2 nanoparticles strongly on the GO surface. The strong coupling between CoS2 and N,S-GO was reflected in the improvement of the oxygen electrode potential. CoS2(400)/N,S-GO showed an outstanding oxygen electrode activity with a potential of about 0.82 V against a reversible hydrogen electrode in alkaline medium, which is far better than the performance of precious catalysts such as Pt/C (1.16 V), Ru/C (1.01 V), and Ir/C (0.92 V).
KW - cobalt sulfide
KW - graphene oxide
KW - nitrogen and sulfur codoping
KW - oxygen electrode
KW - water oxidation
UR - http://www.scopus.com/inward/record.url?scp=84930627938&partnerID=8YFLogxK
U2 - 10.1021/acscatal.5b00154
DO - 10.1021/acscatal.5b00154
M3 - Article
AN - SCOPUS:84930627938
SN - 2155-5435
VL - 5
SP - 3625
EP - 3637
JO - ACS Catalysis
JF - ACS Catalysis
IS - 6
ER -