Abstract
The development of dry adhesive pads (DAPs) is essential to prevent wafer detachment from high-speed wafer-transfer robot arms. However, polydimethylsiloxane (PDMS)-based DAPs, which are insulating elastomers, generate residual charges inside DAPs. These cause charge accumulation and electrostatic interactions between the DAP and the wafer interface. Furthermore, at a high processing temperature of >300 °C, the adhesive and mechanical strengths of conventional DAPs are degraded because of their low thermal and mechanical stability. In this study, we developed bio-inspired DAPs (BDAPs) with various shapes (hole, cylinder, and line patterns) and different contact areas (20, 40, and 60%) through systematic investigations to determine optimized patterns and shapes for different motions. Additionally, we fabricated a multi-walled carbon nanotube (MWCNT)/PDMS composite-based BDAP (c-BDAP), which exhibited high heat resistance and high electrical conductivity. The conductivity of c-BDAP was 6.16 × 10−3 S m−1, and it had a weight loss of ∼4% at 300 °C after 1 h. Our findings can inspire the development of low-cost and high-performance c-BDAPs, which are reliable for various robot arm movements.
Original language | English |
---|---|
Pages (from-to) | 1520-1525 |
Number of pages | 6 |
Journal | Molecular Systems Design and Engineering |
Volume | 8 |
Issue number | 12 |
DOIs | |
State | Published - 14 Sep 2023 |
Bibliographical note
Publisher Copyright:© 2023 The Royal Society of Chemistry.