Abstract
In this paper, we present a direct adaptation strategy (ADAS), which aims to directly adapt a single model to multiple target domains in a semantic segmentation task without pretrained domain-specific models. To do so, we design a multi-target domain transfer network (MTDT-Net) that aligns visual attributes across domains by transferring the domain distinctive features through a new target adaptive denormalization (TAD) module. Moreover, we propose a bi-directional adaptive region selection (BARS) that reduces the attribute ambiguity among the class labels by adaptively selecting the regions with consistent feature statistics. We show that our single MTDT-Net can synthesize visually pleasing domain transferred images with complex driving datasets, and BARS effectively filters out the unnecessary region of training images for each target domain. With the collaboration of MTDT-Net and BARS, our ADAS achieves state-of-the-art performance for multi-target domain adaptation (MTDA). To the best of our knowledge, our method is the first MTDA method that directly adapts to multiple domains in semantic segmentation.
Original language | English |
---|---|
Title of host publication | Proceedings - 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022 |
Publisher | IEEE Computer Society |
Pages | 19174-19184 |
Number of pages | 11 |
ISBN (Electronic) | 9781665469463 |
DOIs | |
State | Published - 2022 |
Event | 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022 - New Orleans, United States Duration: 19 Jun 2022 → 24 Jun 2022 |
Publication series
Name | Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition |
---|---|
Volume | 2022-June |
ISSN (Print) | 1063-6919 |
Conference
Conference | 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022 |
---|---|
Country/Territory | United States |
City | New Orleans |
Period | 19/06/22 → 24/06/22 |
Bibliographical note
Publisher Copyright:© 2022 IEEE.
Keywords
- Image and video synthesis and generation
- Representation learning
- Transfer/low-shot/long-tail learning