TY - JOUR
T1 - Active Sites of Mixed-Metal Core-Shell Oxygen Evolution Reaction Catalysts
T2 - FeO4 Sites on Ni Cores or NiN4 Sites in C Shells?
AU - Lim, Sung Soo
AU - Sivanantham, Arumugam
AU - Choi, Changwon
AU - Shanmugam, Sangaraju
AU - Lansac, Yves
AU - Jang, Yun Hee
N1 - Publisher Copyright:
© 2024 The Authors. Published by American Chemical Society.
PY - 2024/6/18
Y1 - 2024/6/18
N2 - Water electrolysis for clean hydrogen production requires high-activity, high-stability, and low-cost catalysts for its particularly sluggish half-reaction, the oxygen evolution reaction (OER). Currently, the most promising of such catalysts working in alkaline conditions is a core-shell nanostructure, NiFe@NC, whose Fe-doped Ni (NiFe) nanoparticles are encapsulated and interconnected by N-doped graphitic carbon (NC) layers, but the exact OER mechanism of these catalysts is still unclear, and even the location of the OER active site, either on the core side or on the shell side, is still debated. Therefore, we herein derive a plausible active-site model for each side based on various experimental evidence and density functional theory calculations and then build OER free-energy diagrams on both sides to determine the active-site location. The core-side model is an FeO4-type (rather than NiO4-type) active site where an Fe atom sits on Ni oxide layers grown on top of the core surface during catalyst activation, whose facile dissolution provides an explanation for the activity loss of such catalysts directly exposed to the electrolyte. The shell-side model is a NiN4-type (rather than FeN4-type) active site where a Ni atom is intercalated into the porphyrin-like N4C site of the NC shell during catalyst synthesis. Their OER free-energy diagrams indicate that both sites require similar amounts of overpotentials, despite a complete shift in their potential-determining steps, i.e., the final O2 evolution from the oxophilic Fe on the core and the initial OH adsorption to the hydrophobic shell. We conclude that the major active sites are located on the core, but the NC shell not only protects the vulnerable FeO4 active sites on the core from the electrolyte but also provides independent active sites, owing to the N doping.
AB - Water electrolysis for clean hydrogen production requires high-activity, high-stability, and low-cost catalysts for its particularly sluggish half-reaction, the oxygen evolution reaction (OER). Currently, the most promising of such catalysts working in alkaline conditions is a core-shell nanostructure, NiFe@NC, whose Fe-doped Ni (NiFe) nanoparticles are encapsulated and interconnected by N-doped graphitic carbon (NC) layers, but the exact OER mechanism of these catalysts is still unclear, and even the location of the OER active site, either on the core side or on the shell side, is still debated. Therefore, we herein derive a plausible active-site model for each side based on various experimental evidence and density functional theory calculations and then build OER free-energy diagrams on both sides to determine the active-site location. The core-side model is an FeO4-type (rather than NiO4-type) active site where an Fe atom sits on Ni oxide layers grown on top of the core surface during catalyst activation, whose facile dissolution provides an explanation for the activity loss of such catalysts directly exposed to the electrolyte. The shell-side model is a NiN4-type (rather than FeN4-type) active site where a Ni atom is intercalated into the porphyrin-like N4C site of the NC shell during catalyst synthesis. Their OER free-energy diagrams indicate that both sites require similar amounts of overpotentials, despite a complete shift in their potential-determining steps, i.e., the final O2 evolution from the oxophilic Fe on the core and the initial OH adsorption to the hydrophobic shell. We conclude that the major active sites are located on the core, but the NC shell not only protects the vulnerable FeO4 active sites on the core from the electrolyte but also provides independent active sites, owing to the N doping.
UR - http://www.scopus.com/inward/record.url?scp=85195688072&partnerID=8YFLogxK
U2 - 10.1021/acsomega.3c09920
DO - 10.1021/acsomega.3c09920
M3 - Article
AN - SCOPUS:85195688072
SN - 2470-1343
VL - 9
SP - 25748
EP - 25755
JO - ACS Omega
JF - ACS Omega
IS - 24
ER -