Acoustic tweezers for studying intracellular calcium signaling in SKBR-3 human breast cancer cells

Jae Youn Hwang, Chi Woo Yoon, Hae Gyun Lim, Jin Man Park, Sangpil Yoon, Jungwoo Lee, K. Kirk Shung

Research output: Contribution to journalArticlepeer-review

34 Scopus citations

Abstract

Extracellular matrix proteins such as fibronectin (FNT) play crucial roles in cell proliferation, adhesion, and migration. For better understanding of these associated cellular activities, various microscopic manipulation tools have been used to study their intracellular signaling pathways. Recently, it has appeared that acoustic tweezers may possess similar capabilities in the study. Therefore, we here demonstrate that our newly developed acoustic tweezers with a high-frequency lithium niobate ultrasonic transducer have potentials to study intracellular calcium signaling by FNT-binding to human breast cancer cells (SKBR-3). It is found that intracellular calcium elevations in SKBR-3 cells, initially occurring on the microbead-contacted spot and then eventually spreading over the entire cell, are elicited by attaching an acoustically trapped FNT-coated microbead. Interestingly, they are suppressed by either extracellular calcium elimination or phospholipase C (PLC) inhibition. Hence, this suggests that our acoustic tweezers may serve as an alternative tool in the study of intracellular signaling by FNT-binding activities.

Original languageEnglish
Pages (from-to)94-101
Number of pages8
JournalUltrasonics
Volume63
DOIs
StatePublished - 2015

Bibliographical note

Publisher Copyright:
© 2015 Elsevier B.V. All rights reserved.

Keywords

  • Acoustic tweezers
  • Fibronectin
  • High-frequency ultrasound transducer
  • Intracellular calcium elevation
  • SKBR-3 breast cancer cells

Fingerprint

Dive into the research topics of 'Acoustic tweezers for studying intracellular calcium signaling in SKBR-3 human breast cancer cells'. Together they form a unique fingerprint.

Cite this