ABCD: Arbitrary Bitwise Coefficient for De-Quantization

Woo Kyoung Han, Byeonghun Lee, Sang Hyun Park, Kyong Hwan Jin

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

5 Scopus citations

Abstract

Modern displays and contents support more than 8bits image and video. However, bit-starving situations such as compression codecs make low bit-depth (LBD) images (<8bits), occurring banding and blurry artifacts. Previous bit depth expansion (BDE) methods still produce unsatisfactory high bit-depth (HBD) images. To this end, we propose an implicit neural function with a bit query to recover de-quantized images from arbitrarily quantized inputs. We develop a phasor estimator to exploit the information of the nearest pixels. Our method shows superior performance against prior BDE methods on natural and animation images. We also demonstrate our model on YouTube UGC datasets for de-banding. Our source code is available at https://github.com/WooKyoungHan/ABCD

Original languageEnglish
Title of host publicationProceedings - 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023
PublisherIEEE Computer Society
Pages5876-5885
Number of pages10
ISBN (Electronic)9798350301298
DOIs
StatePublished - 2023
Event2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023 - Vancouver, Canada
Duration: 18 Jun 202322 Jun 2023

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Volume2023-June
ISSN (Print)1063-6919

Conference

Conference2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023
Country/TerritoryCanada
CityVancouver
Period18/06/2322/06/23

Bibliographical note

Publisher Copyright:
© 2023 IEEE.

Keywords

  • Low-level vision

Fingerprint

Dive into the research topics of 'ABCD: Arbitrary Bitwise Coefficient for De-Quantization'. Together they form a unique fingerprint.

Cite this