TY - JOUR
T1 - A thickness-mode piezoelectric micromachined ultrasound transducer annular array using a PMN-PZT single crystal
AU - Kang, Woojin
AU - Jung, Joontaek
AU - Lee, Wonjun
AU - Ryu, Jungho
AU - Choi, Hongsoo
N1 - Publisher Copyright:
© 2018 IOP Publishing Ltd.
PY - 2018/4/26
Y1 - 2018/4/26
N2 - Micro-electromechanical system (MEMS) technologies were used to develop a thickness-mode piezoelectric micromachined ultrasonic transducer (Tm-pMUT) annular array utilizing a lead magnesium niobate-lead zirconate titanate (PMN-PZT) single crystal prepared by the solid-state single-crystal-growth method. Dicing is a conventional processing method for PMN-PZT single crystals, but MEMS technology can be adopted for the development of Tm-pMUT annular arrays and has various advantages, including fabrication reliability, repeatability, and a curved element shape. An inductively coupled plasma-reactive ion etching process was used to etch a brittle PMN-PZT single crystal selectively. Using this process, eight ring-shaped elements were realized in an area of 1 × 1 cm2. The resonance frequency and effective electromechanical coupling coefficient of the Tm-pMUT annular array were 2.66 (±0.04) MHz, 3.18 (±0.03) MHz, and 30.05%, respectively, in the air. The maximum positive acoustic pressure in water, measured at a distance of 7.27 mm, was 40 kPa from the Tm-pMUT annular array driven by a 10 Vpp sine wave at 2.66 MHz without beamforming. The proposed Tm-pMUT annular array using a PMN-PZT single crystal has the potential for various applications, such as a fingerprint sensor, and for ultrasonic cell stimulation and low-intensity tissue stimulation.
AB - Micro-electromechanical system (MEMS) technologies were used to develop a thickness-mode piezoelectric micromachined ultrasonic transducer (Tm-pMUT) annular array utilizing a lead magnesium niobate-lead zirconate titanate (PMN-PZT) single crystal prepared by the solid-state single-crystal-growth method. Dicing is a conventional processing method for PMN-PZT single crystals, but MEMS technology can be adopted for the development of Tm-pMUT annular arrays and has various advantages, including fabrication reliability, repeatability, and a curved element shape. An inductively coupled plasma-reactive ion etching process was used to etch a brittle PMN-PZT single crystal selectively. Using this process, eight ring-shaped elements were realized in an area of 1 × 1 cm2. The resonance frequency and effective electromechanical coupling coefficient of the Tm-pMUT annular array were 2.66 (±0.04) MHz, 3.18 (±0.03) MHz, and 30.05%, respectively, in the air. The maximum positive acoustic pressure in water, measured at a distance of 7.27 mm, was 40 kPa from the Tm-pMUT annular array driven by a 10 Vpp sine wave at 2.66 MHz without beamforming. The proposed Tm-pMUT annular array using a PMN-PZT single crystal has the potential for various applications, such as a fingerprint sensor, and for ultrasonic cell stimulation and low-intensity tissue stimulation.
KW - PMN-PZT single crystal
KW - annular array
KW - pMUT
KW - piezoelectric MEMS
KW - ultrasonic transducer
UR - http://www.scopus.com/inward/record.url?scp=85047413765&partnerID=8YFLogxK
U2 - 10.1088/1361-6439/aab9d4
DO - 10.1088/1361-6439/aab9d4
M3 - Article
AN - SCOPUS:85047413765
SN - 0960-1317
VL - 28
JO - Journal of Micromechanics and Microengineering
JF - Journal of Micromechanics and Microengineering
IS - 7
M1 - 075015
ER -