A Meta-Learning Approach for Medical Image Registration

Heejung Park, Gyeong Min Lee, Soopil Kim, Ga Hyung Ryu, Areum Jeong, Min Sagong, Sang Hyun Park

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

4 Scopus citations

Abstract

Non-rigid registration is a necessary but challenging task in medical imaging studies. Recently, unsupervised registration models have shown good performance, but they often require a large-scale training dataset and long training time. Therefore, in real world application where only dozens to hundreds of image pairs are available, existing models cannot be practically used. To address these limitations, we propose a novel unsupervised registration model which is integrated with a gradient-based meta learning framework. In particular, we train a meta learner which finds an optimal initialization point of parameters by utilizing various registration datasets. To quickly adapt to diverse tasks, the meta learner was updated to get close to the center of parameters which are fine-tuned for each registration task. Thereby, our model can adapt to unseen domain tasks via a short fine-tuning process and perform accurate registration. To verify the superiority of our model, we train the model using various types of medical data sets such as retinal Optical Coherence Tomography Angiography (OCTA) for choroidal vasculature, body CT scans, and brain MRI scans and then test it on registration of unseen retinal OCTA for Superficial Capillary Plexus (SCP). In our experiments, the proposed model obtained significantly improved performance in terms of accuracy and training time compared to other registration models.

Original languageEnglish
Title of host publicationISBI 2022 - Proceedings
Subtitle of host publication2022 IEEE International Symposium on Biomedical Imaging
PublisherIEEE Computer Society
ISBN (Electronic)9781665429238
DOIs
StatePublished - 2022
Event19th IEEE International Symposium on Biomedical Imaging, ISBI 2022 - Kolkata, India
Duration: 28 Mar 202231 Mar 2022

Publication series

NameProceedings - International Symposium on Biomedical Imaging
Volume2022-March
ISSN (Print)1945-7928
ISSN (Electronic)1945-8452

Conference

Conference19th IEEE International Symposium on Biomedical Imaging, ISBI 2022
Country/TerritoryIndia
CityKolkata
Period28/03/2231/03/22

Bibliographical note

Publisher Copyright:
© 2022 IEEE.

Keywords

  • Fine-tuning
  • Meta learning
  • Registration
  • Unsupervised learning
  • VoxelMorph

Fingerprint

Dive into the research topics of 'A Meta-Learning Approach for Medical Image Registration'. Together they form a unique fingerprint.

Cite this